
Introduction to
Network Flows



Admin
• No Problem Set This week 

• We just took (are taking?) an exam, and you’ve earned a break 



Story So Far
• Algorithmic design paradigms: 

• Greedy:  often simplest algorithms to design, but only work for 
certain limited class of optimization problems 

• A good initial thought for most problems but rarely optimal 

• Divide and Conquer  

• Solving a problem by breaking it down into smaller 
subproblems and (often) combining results 

• Dynamic programming 

• Recursion with memoization:  avoiding repeated work 

• Trade space (memoization structure representation) for 
time



New Algorithmic Paradigm
• Network flows model a variety of optimization problems 

• These optimization problems look complicated with lots of 
constraints 

• At first they may seem to have nothing to do with networks or 
flows! 

• Very powerful problem solving frameworks 

• We'll focus on the concept of problem reductions

• Problem A reduces to B if a solution to B leads to a solution 
to A (have we seen any reductions before?) 

• We’ll learn how to prove that our reductions are correct



What’s a Flow Network?
• A flow network is a directed graph  with a 

• A source is a vertex  with in-degree  

• A sink is a vertex  with out-degree  

• Each edge  has edge capacity 

G = (V, E)
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Assumptions
• Assume that each node  is on some  path, that is, 

  exists, for any vertex  

• Implies  is connected and  

• Assume capacities are positive integers

• Will revisit this assumption & what happens otherwise 

• Directed edge  written as  

• For simplifying expositions, we will sometimes write 

 when 

v s-t
s ↝ v ↝ t v ∈ V

G m ≥ n − 1

(u, v) u → v

c(u → v) = 0 (u, v) ∉ E



What’s a Flow?
• Given a flow network, an -flow or just flow (if source  

and sink  are clear from context)  satisfies the 
following two constraints: 

• [Flow conservation]   , for  where 
 

             

           

• To simplify,  if there is no edge from  to 

(s, t) s
t f : E → ℤ+

fin(v) = fout(v) v ≠ s, t

fin(v) = ∑
u

f(u → v)

fout(v) = ∑
w

f(v → w)

f(u → v) = 0 u v
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Feasible Flow
• And second, a feasible flow must satisfy the capacity 

constraints of the network, that is, 

[Capacity constraint]  for each , e ∈ E 0 ≤ f(e) ≤ c(e)
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Value of a Flow
• Definition. The value of a flow , written , is .f v( f ) fout(s)

  =  5 + 10 + 10  =  25v( f )
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Value of a Flow
• Definition. The value of a flow , written , is . 

• Lemma. 

f v( f ) fout(s)

fout(s) = fin(t)

value  =  5 + 10 + 10  =  25
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this is true?



Value of a Flow
Lemma.  

Proof.   Let  

•
Then,  

• For every   flow conservation implies  

• Thus all terms cancel out on both sides except 
 

• But 

fout(s) = fin(t)

f(E) = ∑
e∈E

f(e)

∑
v∈V

fin(v) = f(E) = ∑
v∈V

fout(v)

v ≠ s, t fin(v) = fout(v)

fin(s) + fin(t) = fout(s) + fout(t)

fin(s) = fout(t) = 0 ∎

u v

f



Value of a Flow
• Lemma.  

• Corollary. .

fout(s) = fin(t)

v( f ) = fin(t)

value  =  5 + 10 + 10  =  25
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Max-Flow Problem
• Problem.  Given an  flow network, find a feasible  flow of 

maximum value.
s-t s-t
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Minimum Cut Problem



Cuts are Back!
• Cuts in graphs played a key role when we were designing 

algorithms for MSTs 

• What is the definition of a cut?

ts



Cuts in Flow Networks
• Recall. A cut  in a graph is a partition of vertices such 

that  ,  and  are non-empty. 

• Definition. An -cut is a cut  s.t.  and .

(S, T )
S ∪ T = V S ∩ T = ∅ S, T

(s, t) (S, T ) s ∈ S t ∈ T

ts



Cut Capacity
• Recall. A cut  in a graph is a partition of vertices such 

that  ,  and  are non-empty. 

• Definition. An -cut is a cut  s.t.  and . 

• Capacity of a -cut  is the sum of the capacities of 
edges leaving : 

•

(S, T )
S ∪ T = V S ∩ T = ∅ S, T

(s, t) (S, T ) s ∈ S t ∈ T

(s, t) (S, T )
S

c(S, T ) = ∑
v∈S,w∈T

c(v → w)



Quick Quiz
Question.  What is the capacity of the  given by grey and white 
nodes? 

A.  11  (20 + 25 − 8 − 11 − 9 − 6) 

B.  34  (8 + 11 + 9 + 6)  

C.  45  (20 + 25) 

D.  79  (20 + 25 + 8 + 11 + 9 + 6) 
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Min Cut Problem
• Problem.  Given an  flow network, find an  cut of 

minimum capacity.
s-t s-t
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Relationship between  
Flows and Cuts



Flows and Cuts
• Cuts represent "bottlenecks" in a flow network 

• For any -cut, all flow needs to “exit”  to get to  

• We will formalize this intuition

(s, t) S t

s t
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