Introduction to Network Flows

Admin

- No Problem Set This week
 - We just took (are taking?) an exam, and you've earned a break

Story So Far

- Algorithmic design paradigms:
 - **Greedy**: often simplest algorithms to design, but only work for certain limited class of optimization problems
 - A good initial thought for most problems but rarely optimal

Divide and Conquer

 Solving a problem by breaking it down into smaller subproblems and (often) combining results

Dynamic programming

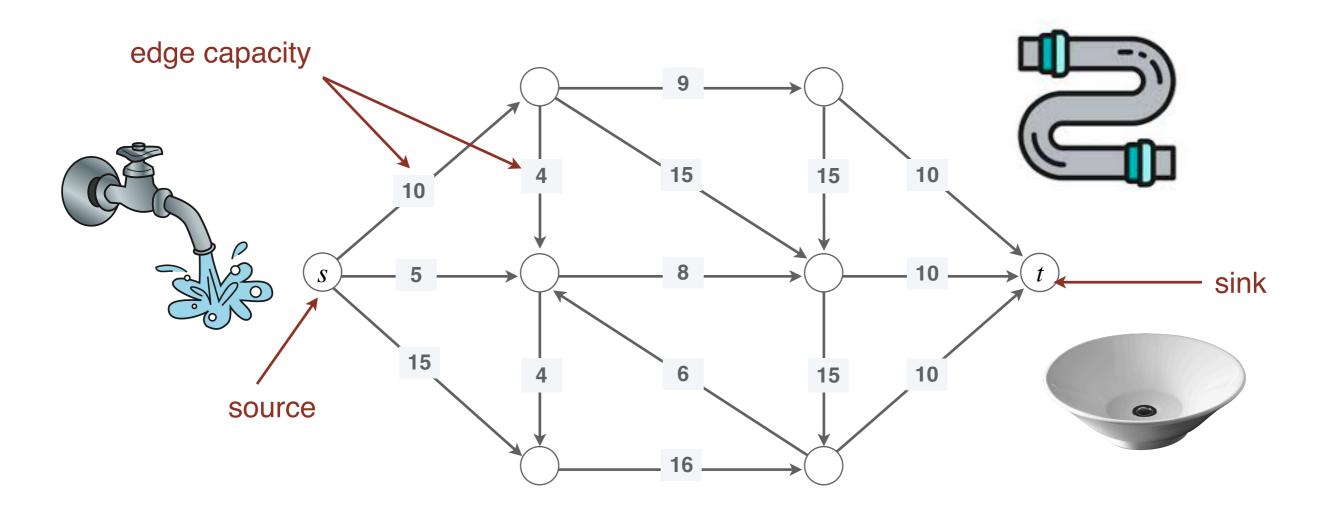
- Recursion with memoization: avoiding repeated work
- Trade space (memoization structure representation) for time

New Algorithmic Paradigm

- Network flows model a variety of optimization problems
- These optimization problems look complicated with lots of constraints
 - At first they may seem to have nothing to do with networks or flows!
- Very powerful problem solving frameworks
- We'll focus on the concept of problem reductions
 - Problem A reduces to B if a solution to B leads to a solution to A (have we seen any reductions before?)
- We'll learn how to prove that our reductions are correct

What's a Flow Network?

- A flow network is a directed graph G = (V, E) with a
 - A **source** is a vertex s with in-degree 0
 - A **sink** is a vertex t with out-degree 0
 - Each edge $e \in E$ has edge capacity c(e) > 0



Assumptions

- Assume that each node v is on some s-t path, that is, $s \leadsto v \leadsto t$ exists, for any vertex $v \in V$
 - Implies G is connected and $m \ge n-1$
- Assume capacities are positive integers
 - Will revisit this assumption & what happens otherwise
- Directed edge (u, v) written as $u \to v$
- For simplifying expositions, we will sometimes write $c(u \rightarrow v) = 0$ when $(u, v) \notin E$

What's a Flow?

- Given a flow network, an (s, t)-flow or just flow (if source s and sink t are clear from context) $f: E \to \mathbb{Z}^+$ satisfies the following two constraints:
- [Flow conservation] $f_{in}(v) = f_{out}(v)$, for $v \neq s, t$ where

$$f_{in}(v) = \sum_{u} f(u \to v)$$

$$f_{out}(v) = \sum_{w} f(v \to w)$$

$$f_{out}(v) = \int_{w} f(v \to w)$$

flow

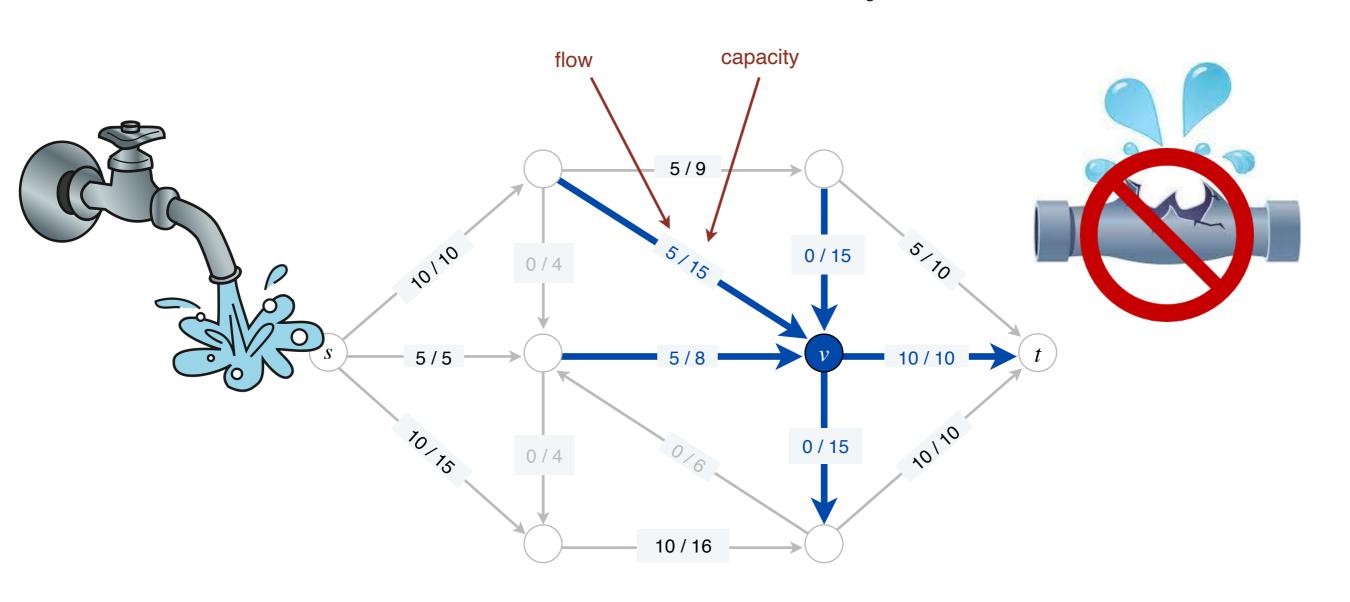
capacity

• To simplify, $f(u \rightarrow v) = 0$ if there is no edge from u to v

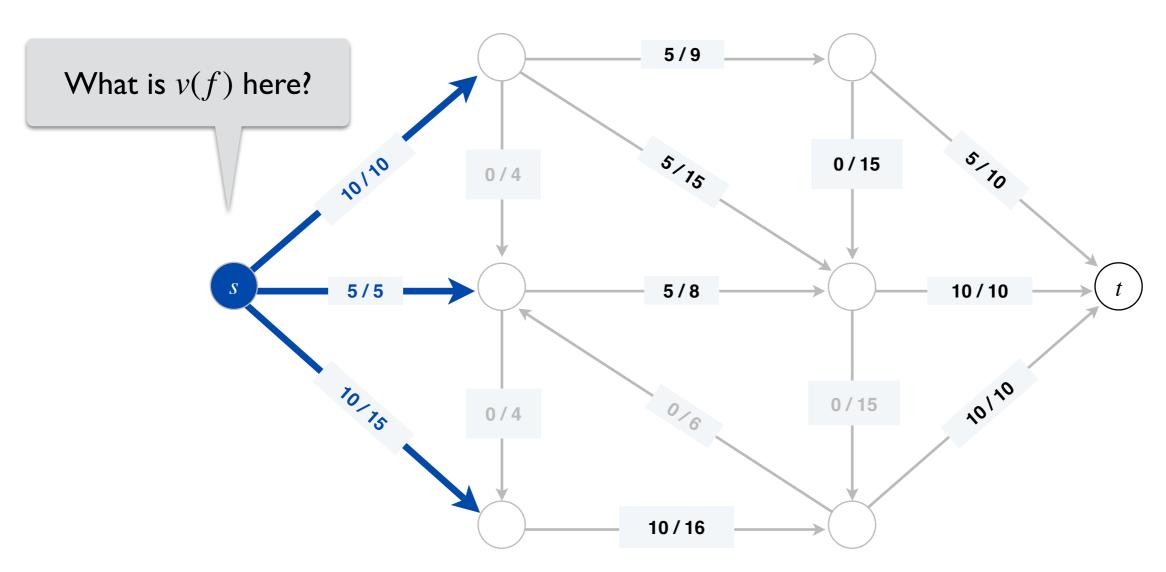
Feasible Flow

 And second, a feasible flow must satisfy the capacity constraints of the network, that is,

[Capacity constraint] for each $e \in E$, $0 \le f(e) \le c(e)$



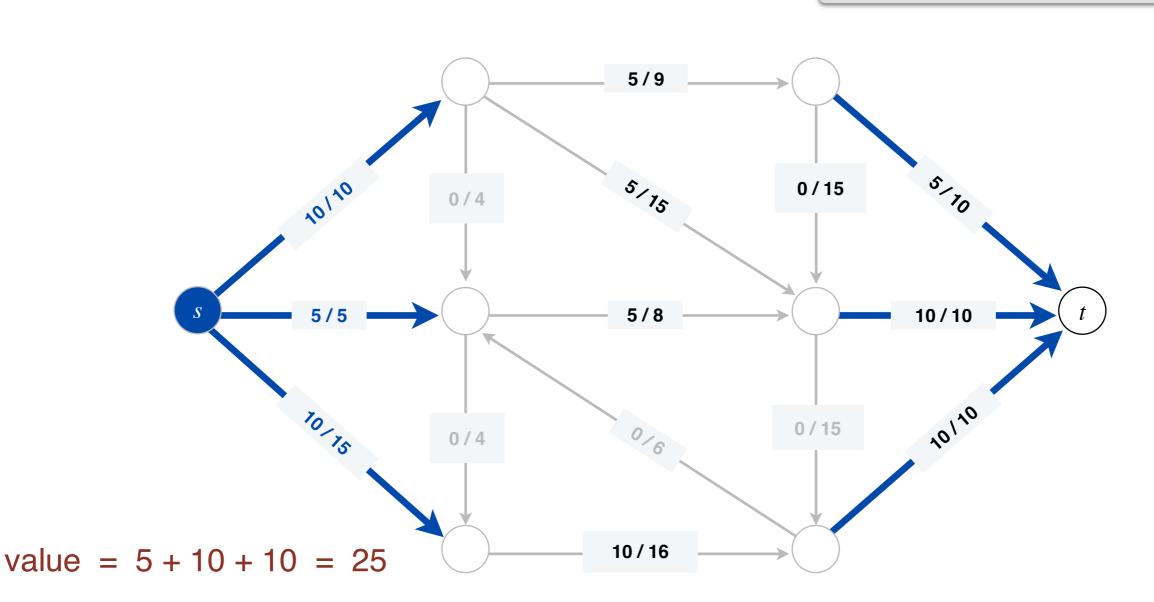
• **Definition.** The **value** of a flow f, written v(f), is $f_{out}(s)$.



$$v(f) = 5 + 10 + 10 = 25$$

• **Definition.** The **value** of a flow f, written v(f), is $f_{out}(s)$.

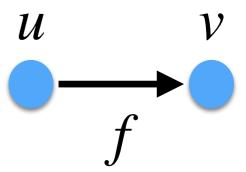
Intuitively, why do you think this is true?



Lemma. $f_{out}(s) = f_{in}(t)$

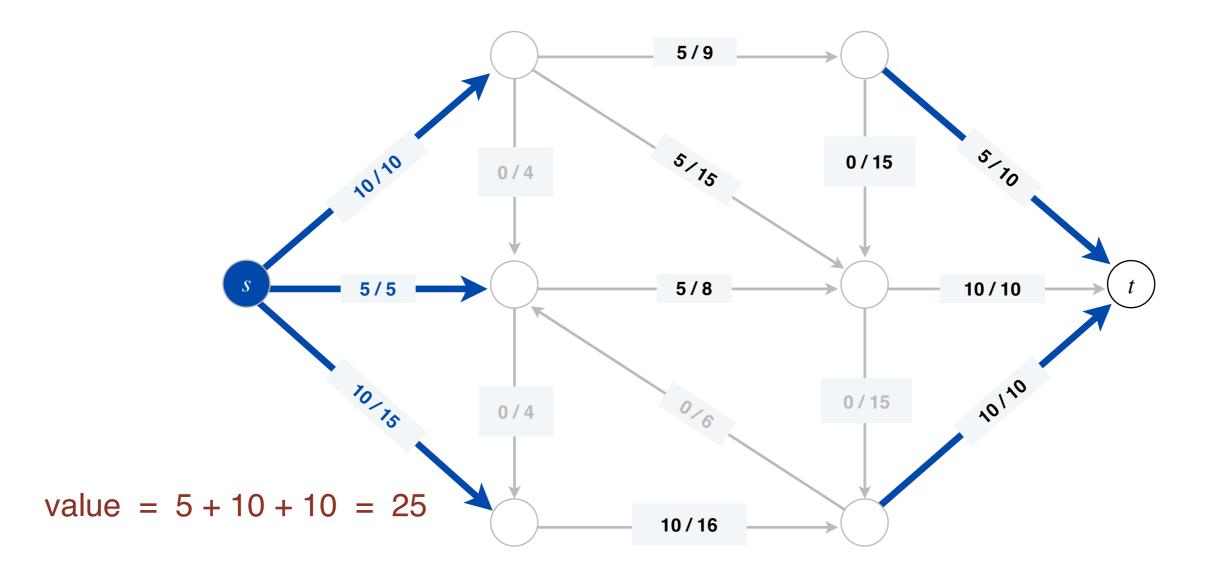
Proof. Let
$$f(E) = \sum_{e \in E} f(e)$$

Then,
$$\sum_{v \in V} f_{in}(v) = f(E) = \sum_{v \in V} f_{out}(v)$$



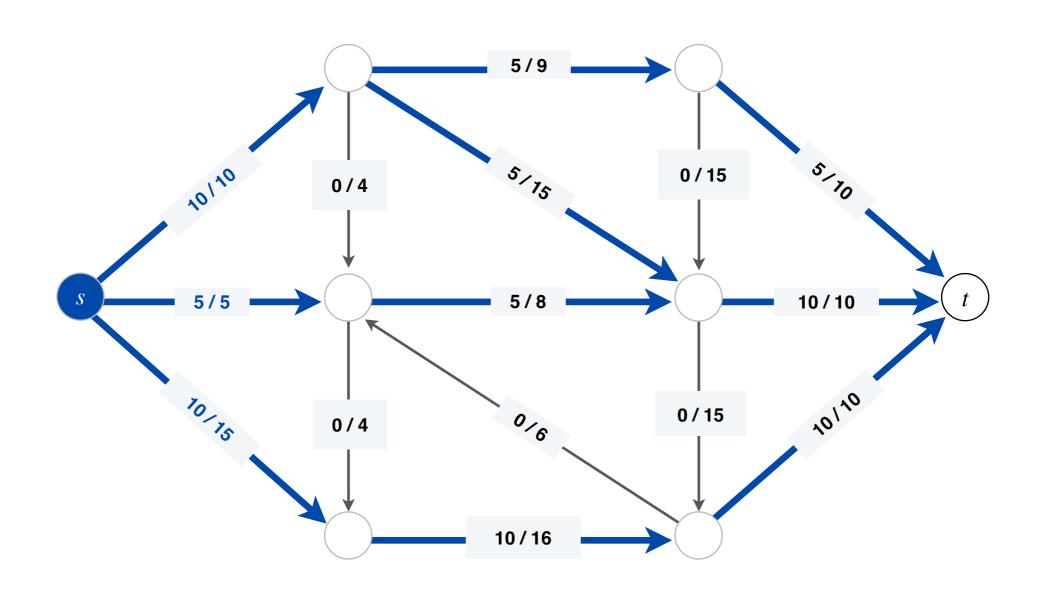
- For every $v \neq s, t$ flow conservation implies $f_{in}(v) = f_{out}(v)$
- Thus all terms cancel out on both sides except $f_{in}(s) + f_{in}(t) = f_{out}(s) + f_{out}(t)$
- But $f_{in}(s) = f_{out}(t) = 0$

- Lemma. $f_{out}(s) = f_{in}(t)$
- Corollary. $v(f) = f_{in}(t)$.



Max-Flow Problem

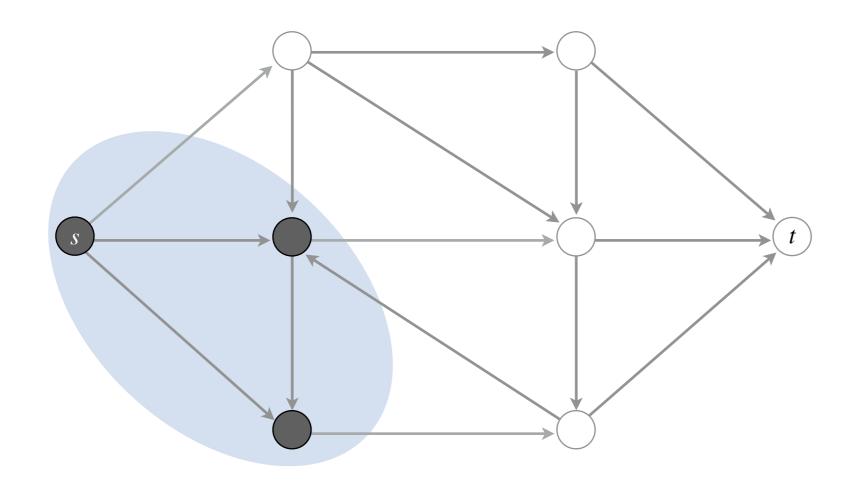
 Problem. Given an s-t flow network, find a feasible s-t flow of maximum value.



Minimum Cut Problem

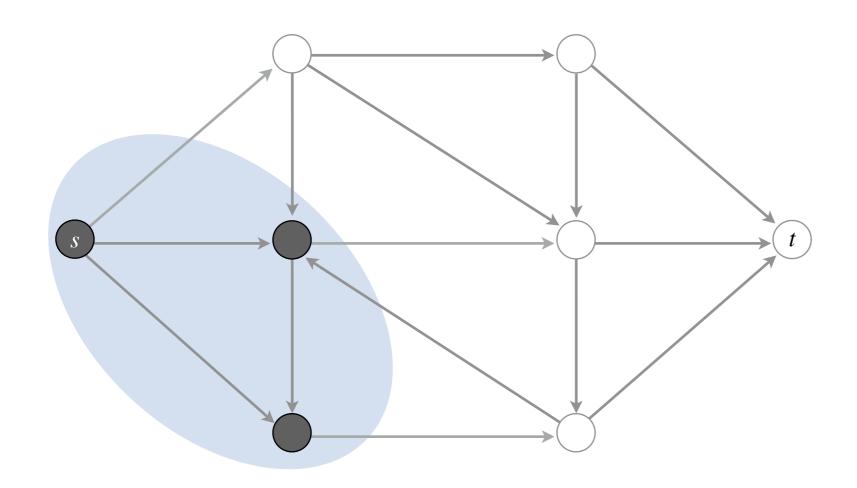
Cuts are Back!

- Cuts in graphs played a key role when we were designing algorithms for MSTs
- What is the definition of a cut?



Cuts in Flow Networks

- Recall. A cut (S,T) in a graph is a partition of vertices such that $S \cup T = V$, $S \cap T = \emptyset$ and S,T are non-empty.
- **Definition**. An (s, t)-cut is a cut (S, T) s.t. $s \in S$ and $t \in T$.



Cut Capacity

- Recall. A cut (S,T) in a graph is a partition of vertices such that $S \cup T = V$, $S \cap T = \emptyset$ and S,T are non-empty.
- **Definition**. An (s, t)-cut is a cut (S, T) s.t. $s \in S$ and $t \in T$.
- Capacity of a (s, t)-cut (S, T) is the sum of the capacities of edges leaving S:

$$c(S,T) = \sum_{v \in S, w \in T} c(v \to w)$$

Quick Quiz

 $c(S,T) = \sum c(v \to w)$

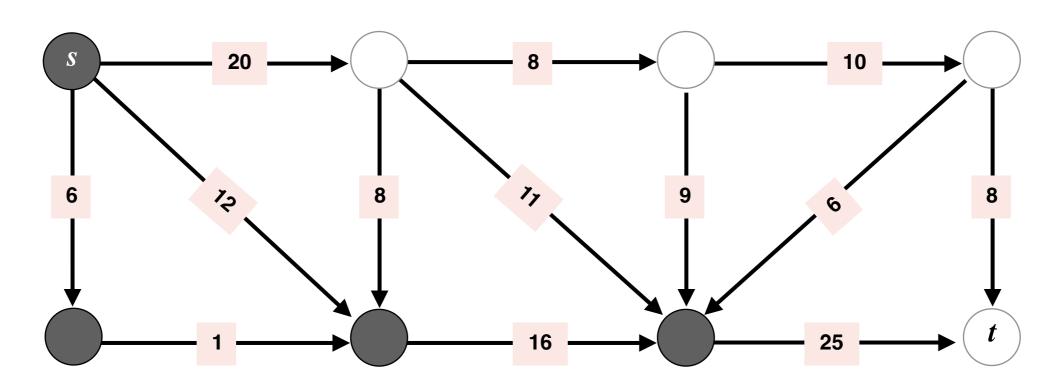
 $v \in S, w \in T$

Question. What is the capacity of the *s-t* given by grey and white nodes?

A. 11
$$(20 + 25 - 8 - 11 - 9 - 6)$$

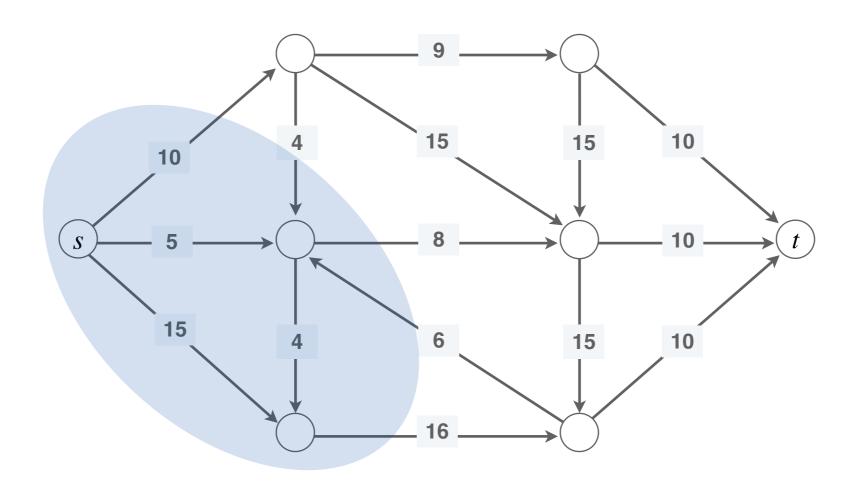
C.
$$45 (20 + 25)$$

D. 79
$$(20 + 25 + 8 + 11 + 9 + 6)$$



Min Cut Problem

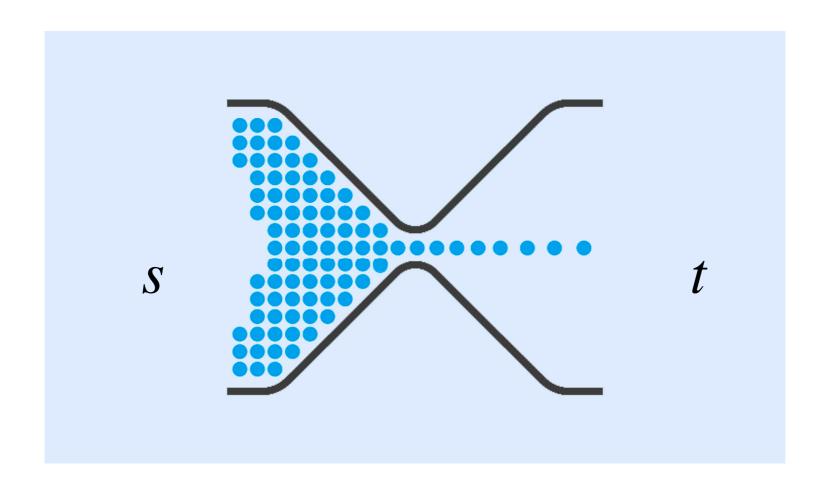
Problem. Given an s-t flow network, find an s-t cut of minimum capacity.



Relationship between Flows and Cuts

Flows and Cuts

- Cuts represent "bottlenecks" in a flow network
- For any (s, t)-cut, all flow needs to "exit" S to get to t
- We will formalize this intuition



Acknowledgments

- Some of the material in these slides are taken from
 - Kleinberg Tardos Slides by Kevin Wayne (https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsl.pdf)
 - Jeff Erickson's Algorithms Book (http://jeffe.cs.illinois.edu/ teaching/algorithms/book/Algorithms-JeffE.pdf)