
Introduction to
Network Flows

Admin
• No Problem Set This week

• We just took (are taking?) an exam, and you’ve earned a break

Story So Far
• Algorithmic design paradigms:

• Greedy: often simplest algorithms to design, but only work for
certain limited class of optimization problems

• A good initial thought for most problems but rarely optimal

• Divide and Conquer

• Solving a problem by breaking it down into smaller
subproblems and (often) combining results

• Dynamic programming

• Recursion with memoization: avoiding repeated work

• Trade space (memoization structure representation) for
time

New Algorithmic Paradigm
• Network flows model a variety of optimization problems

• These optimization problems look complicated with lots of
constraints

• At first they may seem to have nothing to do with networks or
flows!

• Very powerful problem solving frameworks

• We'll focus on the concept of problem reductions

• Problem A reduces to B if a solution to B leads to a solution
to A (have we seen any reductions before?)

• We’ll learn how to prove that our reductions are correct

What’s a Flow Network?
• A flow network is a directed graph with a

• A source is a vertex with in-degree

• A sink is a vertex with out-degree

• Each edge has edge capacity

G = (V, E)
s 0

t 0
e ∈ E c(e) > 0

s t5

15

10 15

16

9

15

6

8 10

154

4 10

10

edge capacity

source

sink

Assumptions
• Assume that each node is on some path, that is,

 exists, for any vertex

• Implies is connected and

• Assume capacities are positive integers

• Will revisit this assumption & what happens otherwise

• Directed edge written as

• For simplifying expositions, we will sometimes write

 when

v s-t
s ↝ v ↝ t v ∈ V

G m ≥ n − 1

(u, v) u → v

c(u → v) = 0 (u, v) ∉ E

What’s a Flow?
• Given a flow network, an -flow or just flow (if source

and sink are clear from context) satisfies the
following two constraints:

• [Flow conservation] , for where

• To simplify, if there is no edge from to

(s, t) s
t f : E → ℤ+

fin(v) = fout(v) v ≠ s, t

fin(v) = ∑
u

f(u → v)

fout(v) = ∑
w

f(v → w)

f(u → v) = 0 u v

0 / 15

10 / 10v5 / 8

5 / 15 0 / 15

flow capacity

Feasible Flow
• And second, a feasible flow must satisfy the capacity

constraints of the network, that is,

[Capacity constraint] for each , e ∈ E 0 ≤ f(e) ≤ c(e)

0 / 4

0 / 4 0 / 15

10 / 1
0

10 / 105 / 5 vs t

0 / 6

5 / 10

5 / 9

5 / 8

5 / 15

10 / 1
010 / 15

10 / 16

flow capacity

0 / 15

Value of a Flow
• Definition. The value of a flow , written , is .f v(f) fout(s)

 = 5 + 10 + 10 = 25v(f)

0 / 4

10 / 1
0

10 / 105 / 5s t

5 / 10

5 / 9

5 / 8

5 / 15

10 / 1
010 / 15

0 / 150 / 4

0 / 6

10 / 16

0 / 15

What is here?v(f)

Value of a Flow
• Definition. The value of a flow , written , is .

• Lemma.

f v(f) fout(s)

fout(s) = fin(t)

value = 5 + 10 + 10 = 25

0 / 4

10 / 1
0

10 / 105 / 5s t

5 / 10

5 / 9

5 / 8

5 / 15

10 / 1
010 / 15

0 / 150 / 4

0 / 6

10 / 16

0 / 15

Intuitively, why do you think
this is true?

Value of a Flow
Lemma.

Proof. Let

•
Then,

• For every flow conservation implies

• Thus all terms cancel out on both sides except

• But

fout(s) = fin(t)

f(E) = ∑
e∈E

f(e)

∑
v∈V

fin(v) = f(E) = ∑
v∈V

fout(v)

v ≠ s, t fin(v) = fout(v)

fin(s) + fin(t) = fout(s) + fout(t)

fin(s) = fout(t) = 0 ∎

u v

f

Value of a Flow
• Lemma.

• Corollary. .

fout(s) = fin(t)

v(f) = fin(t)

value = 5 + 10 + 10 = 25

0 / 4

10 / 1
0

10 / 105 / 5s t

5 / 10

5 / 9

5 / 8

5 / 15

10 / 1
010 / 15

0 / 150 / 4

0 / 6

10 / 16

0 / 15

Max-Flow Problem
• Problem. Given an flow network, find a feasible flow of

maximum value.
s-t s-t

0 / 4

10 / 1
0

10 / 105 / 5s t

5 / 10

5 / 9

5 / 8

5 / 15

10 / 1
010 / 15

0 / 150 / 4

0 / 6

10 / 16

0 / 15

Minimum Cut Problem

Cuts are Back!
• Cuts in graphs played a key role when we were designing

algorithms for MSTs

• What is the definition of a cut?

ts

Cuts in Flow Networks
• Recall. A cut in a graph is a partition of vertices such

that , and are non-empty.

• Definition. An -cut is a cut s.t. and .

(S, T)
S ∪ T = V S ∩ T = ∅ S, T

(s, t) (S, T) s ∈ S t ∈ T

ts

Cut Capacity
• Recall. A cut in a graph is a partition of vertices such

that , and are non-empty.

• Definition. An -cut is a cut s.t. and .

• Capacity of a -cut is the sum of the capacities of
edges leaving :

•

(S, T)
S ∪ T = V S ∩ T = ∅ S, T

(s, t) (S, T) s ∈ S t ∈ T

(s, t) (S, T)
S

c(S, T) = ∑
v∈S,w∈T

c(v → w)

Quick Quiz
Question. What is the capacity of the given by grey and white
nodes?

A. 11 (20 + 25 − 8 − 11 − 9 − 6)

B. 34 (8 + 11 + 9 + 6)

C. 45 (20 + 25)

D. 79 (20 + 25 + 8 + 11 + 9 + 6)

s-t

812 9

8

161

s

86

25 t

1020

6 11

c(S, T) = ∑
v∈S,w∈T

c(v → w)

Min Cut Problem
• Problem. Given an flow network, find an cut of

minimum capacity.
s-t s-t

s t5

15

10 15

16

9

15

6

8 10

154

4 10

10

Relationship between
Flows and Cuts

Flows and Cuts
• Cuts represent "bottlenecks" in a flow network

• For any -cut, all flow needs to “exit” to get to

• We will formalize this intuition

(s, t) S t

s t

Acknowledgments
• Some of the material in these slides are taken from

• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf)

• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE.pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

