
Algorithms: Floyd-Warshall

1 Consider the adjacency matrix in Model 1: it describes a weighted
directed graph. (You may wish to draw the graph if doing so helps
you to more clearly visualize the graph.) Learning objective: Students will

derive an efficient algorithm for finding
the shortest paths between all pairs of
vertices in a directed, weighted graph.

Examining the graph, list all pairs of vertices for which there is a
path through an intermediate vertex that is cheaper than tracing
the edge from the first to the second vertex. For example, it is
cheaper to travel from v1 to v2 through intermediate vertex v4

(total length: 2 (v1 to v4) + 1 (v4 to v2) = 3) than directly from v1 to
v2 (edge weight: 6).

Note that the graph is not symmetric; the shortest path from v1 to
v2 need not be the same as the shortest path from v2 to v1.

Be sure to list the pair, the intermediate vertex, and the total cost
of the path with the intermediate vertex. You should find a total of
five pairs.

2 Find an instance where taking a path that goes through a sec-
ond intermediate vertex is cheaper than both (a) the path going
through just one intermediate vertex and (b) tracing the single
edge that connects the starting and ending vertices. There is only
one such instance.

Model 1: Adjacency Matrix

v1 v2 v3 v4

v1 - 8 7 2

v2 3 - 3 6

v3 8 3 - 2

v4 6 1 5 -

Figure 1: An adjacency matrix for a
weighted directed graph G. The value
at M[i, j] corresponds to the weight of
edge (vi , vj). In other words, nodes on
the left are originating vertices. Nodes
on the top are destination vertices.

algorithms: floyd-warshall 2

3 Inspired by your answers to Questions 1 and 2, fill in the base case
and recursive cases of the algorithm below. The algorithm finds
the shortest path distance between any pair of vertices for a graph
with n vertices.

The parameter g refers to the graph being explored, and g.edge_weight(i, j)

returns the weight of the edge that connects vi to vj in graph g.
The start and end parameters represent the indices of the ver-
tices between which we seek the shortest path. The k parameter
represents the maximum vertex index under consideration as an
intermediate node. When k = 0, no intermediate nodes will be
considered; only the edge weight from start to end can be used.
When k = 1, v1 can be considered. When k = 2, v1 and v2 can be
considered, and so forth.

shortest_path_distance(Graph g, int start, int end, int k)

if k == 0

return ()

else

let distance_ignoring_vertex_k =

shortest_path_distance(g, , ,)

let distance_using_vertex_k =

shortest_path_distance(g, , ,)

+ shortest_path_distance(g, , ,)

if ()

return distance_ignoring_vertex_k

else

return distance_using_vertex_k

4 List every distinct base-case recursive call encountered when call-
ing the algorithm on Model 1 with the call shortest_path_distance(model_1, 1, 4, 4).

5 To prove the algorithm from Question 3 correctly finds the shortest
path from start to end, we need to use strong induction1 due to its 1 In weak induction, we assume that

P(k) is true in order to prove P(k + 1).
In strong induction, we assume that
our inductive hypothesis holds for all
values preceding k. Said differently,
we assume that each P(i)—from our
base case up until P(k)—is true (e.g.,
P(1), P(2), . . . , P(k) all hold) in order to
prove that P(k + 1) is true.

multiple distinct recursive calls. What would all the base cases be
for a correctness proof by strong induction?

6 How many base cases would there be?

© 2020 Gabriel J. Ferrer. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

algorithms: floyd-warshall 3

7 What would be the inductive hypothesis?

8 What would we need to prove in the inductive step?

9 Complete the proof by strong induction that this algorithm finds
the shortest path from start to end.

10 Write a recurrence for the asymptotic time complexity of the algo-
rithm you wrote in Question 3.

11 Estimate the asymptotic time complexity of your algorithm based
on the recurrence from Question 10.

12 How might the algorithm (or adjacency matrix) from Question 3

be modified to handle missing edges?

13 If we were to rewrite the algorithm from Question 3 as a bottom-
up dynamic programming algorithm (e.g., left-to-right, row-major
order, etc.), how many dimensions would the table need to have?
What would each dimension represent?

14 Write pseudocode for a bottom-up dynamic programming version
of the algorithm. (This is known as the Floyd-Warshall algorithm.)

© 2020 Gabriel J. Ferrer. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

algorithms: floyd-warshall 4

15 What is the asymptotic time complexity of the algorithm from
Question 14?

16 How might we augment the dynamic programming table so that
we can reconstruct the path between two vertices?

17 Under what circumstances is Dijkstra’s algorithm preferable to the
Floyd-Warshall algorithm? Why?

18 Under what circumstances is the Floyd-Warshall algorithm prefer-
able to Dijkstra’s algorithm? Why?

© 2020 Gabriel J. Ferrer. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

	Model 1: Adjacency Matrix

