Dynamic Programming III: Knapsack Problem

Admin

- Exam distributed after class Friday; can be taken in any 24 hour period ending at $\mathbf{1 0 . 0 0}$ am Wednesday (must be submitted by start of Wednesday's class)
- LaTeX template will be shared if you wish to use it
- You may write by hand but must clearly label answers
- The expectation is the same in either case: work out problem on scratch paper, write up final (clean) solution
- Friday we will meet upstairs
- Activity to practice dynamic programming w.r.t. graphs
- Also use Friday as a chance to ask questions about anything (including hw solutions)

Knapsack Problem

Further Reading: Chapter 6.4, KT

Knapsack Problem

Problem. Pack a knapsack to maximize the total item value

- There are n items, each with weight w_{i} and value v_{i} :

$$
I=\left\{\left(v_{1}, w_{1}\right), \ldots,\left(v_{n}, w_{n}\right)\right\}
$$

- Knapsack has total capacity C
- For any set of items T they fit in the Knapsack iff

$$
\sum_{i \in T} w_{i} \leq C
$$

- Goal: Find subset S of items that fit in the knapsack (satisfy the capacity constraint) and maximize the total value:

$$
\sum_{i \in S} v_{i}
$$

- Assumption. All weights and values are non-negative integers

Knapsack Problem

Let's first explore greedy solutions to the problem.
Consider the following problem instance:

- Ideas for what to be greedy about?

Creative Commons Attribution-Share Alike 2.5
by Dake

i	v_{i}	w_{i}
1	$\$ 1$	1 kg
2	$\$ 6$	2 kg
3	$\$ 18$	5 kg
4	$\$ 22$	6 kg
5	$\$ 28$	7 kg

Knapsack instance
(weight limit C $=11 \mathrm{~kg}$)

Knapsack Problem

Idea 1: Pick the most expensive stuff we can!

- Algorithm: greedily pick the highest value item that fits.
Total value: $\$ 35$
Utilized capacity: 10 kg

Creative Commons Attribution-Share Alike 2.5
by Dake

i	v_{i}	w_{i}
1	$\$ 1$	1 kg
2	$\$ 6$	2 kg
3	$\$ 18$	5 kg
4	$\$ 22$	6 kg
5	$\$ 28$	7 kg

Knapsack instance
(weight limit C = 11 kg)

Knapsack Problem

Idea 2: Pick the lightest stuff we can!

- Algorithm: greedily pick the lowest weight item that fits.

Knapsack Problem

Idea 1: Pick the most expensive stuff we can!

- Algorithm: greedily pick the highest weight item that fits.
Total value: $\$ 35$
Utilized capacity: 10 kg

Creative Commons Attribution-Share Alike 2.5
by Dake

i	v_{i}	w_{i}
1	$\$ 1$	1 kg
2	$\$ 6$	2 kg
3	$\$ 18$	5 kg
4	$\$ 22$	6 kg
5	$\$ 28$	7 kg

Knapsack instance
(weight limit C = 11 kg)

Knapsack Problem

Other ideas?

Spoiler: Greedy doesn't work! What is optimal in this instance?

- Optimal packing is $\left\{i_{3}, i_{4}\right\}$: value $\$ 40$ (and weight 11)

How many packings muse we consider in an exhaustive search?

Creative Commons Attribution-Share Alike 2.5
by Dake

Exponential Possibilities

Given S items, how many subsets of items are there in total?

- 2^{S} : there are an exponential number of possibilities
- Dynamic programming trades of space for time, and through memoization, we get an (interestingly) efficient solution!

Creative Commons Attribution-Share Alike 2.5
by Dake

i	v_{i}	w_{i}
1	$\$ 1$	1 kg
2	$\$ 6$	2 kg
3	$\$ 18$	5 kg
4	$\$ 22$	6 kg
5	$\$ 28$	7 kg
knapsack instance (weight limit $\mathrm{W}=\mathbf{1 1}$)		

Recipe for a Dynamic Program

- Formulate the right subproblem. The subproblem must have an optimal substructure
- Formulate the recurrence. Identify how the result of the smaller subproblems can lead to that of a larger subproblem
- State the base case(s). The subproblem thats so small we know the answer to it immediately!
- State the final answer. (In terms of the subproblem)
- Choose a memoization data structure. Where are you going to store already computed results? (Usually a table)
- Identify evaluation order. Identify the dependencies: which subproblems depend on which ones? Using these dependencies, identify an evaluation order
- Analyze space and running time. As always!

Towards a Subproblem

Previously, our DP has tracked a value instead of a set.

- Idea 1: Keep track of current capacity
- Subproblem. Let $T[c]$ denote the value of the optimal solution that uses capacity $\leq c$.
- Optimal solution: $T[C]$
- Recurrence: Not obvious with just capacities.
- Why is this a challenge?

Subproblems and Optimality

When items are selected, we need to fill the remaining capacity optimally

- Challenge: the subproblem associated with a given remaining capacity can be solved in different ways

Partial Selection \#2

- In both cases, remaining capacity: 11 kg , but items left are different
- Using just capacity might not be enough. Perhaps a 2D table can capture capacity AND items?

Subproblem: Optimal Substructure

Subproblem

Subproblem

OPT (i, c) : value of optimal solution using items $\{1,2, \ldots, i\}$ with total capacity $\leq c$, for $1 \leq i \leq n, \quad 0 \leq c \leq C$

Final answer

OPT (n, C)
Consider all n items, consider full capacity C

Base Cases

$n \times C$: Are there any rows/columns can we fill immediately?

- What about the first column corresponding to item 1 ?
$\operatorname{OPT}(1, c)$: Value of optimal solution that uses item 1 and has total capacity at most c
- For $i=1 ; c \in\{1,2, \ldots, C\}$ we can fill out the first column as:

$$
\begin{array}{ll}
\operatorname{OPT}(1, c)=v_{1} \text { if } c \geq w_{1} & \text { Item } 1 \text { fits, add its value } v_{1} \\
\operatorname{OPT}(1, c)=0 \text { if } c<w_{1} & \begin{array}{c}
\text { Item } 1 \text { does not fit, value } \\
\text { of empty knapsack is } 0
\end{array}
\end{array}
$$

Base Cases

Are there any rows/columns can we fill immediately?

- What about the first row corresponding to capacity 0 ?
- OPT($i, 0)$: Value of optimal solution that uses first i items and has total capacity at most 0
- For $i=1,2, \ldots, n$ we can fill out the first row as:

$$
\mathrm{OPT}(i, 0)=0
$$

Items $1 \ldots i$ do not fit, value of empty knapsack is 0

Optimal Substructure

- OPT($i, c)$: Let us try to construct the optimal solution that uses items $\{1,2, \ldots, i\}$ and capacity at most c
- What are the possibilities for the last $i^{\text {th }}$ item:
- Either item i is in the optimal solution or not
- We must consider both cases
- Case 1. Suppose item i is not in the optimal solution, what is the optimal way to solve the remaining problem?
- $\operatorname{OPT}(i, c)=\operatorname{OPT}(i-1, c)$

Item i is left out, use best solution that considers items $1 \ldots(i-1)$ for the same capacity

Optimal Substructure

- OPT($i, c)$: Let us try to construct the optimal solution that uses items $\{1,2, \ldots, i\}$ and capacity at most c
- What are the possibilities for the last $i^{\text {th }}$ item:
- Either item i is in the optimal solution or not
- We must consider both cases
- Case 2. Suppose item i is in the optimal solution, what is the recurrence of the optimal solution?
- $\operatorname{OPT}(i, c)=v_{i}+\operatorname{OPT}\left(i-1, c-w_{i}\right)$
- This case only possible if $c \geq w_{i}$

Final Recurrence

For $1 \leq i \leq n$ and $1 \leq c \leq C$, we have:

$$
\begin{aligned}
& \mathrm{OPT}(i, c)= \\
& \max \left\{\mathrm{OPT}(i-1, c), v_{i}+\mathrm{OPT}\left(i-1, c-w_{i}\right)\right\}
\end{aligned}
$$

- Memoization structure: We store OPT $[i, c]$ values in a 2-D array or table using space $O(n C)$
- Evaluation order: In what order should we fill in the table?
- Row-major order (row-by-row)

Running Time

- Time to fill out a single table cell?
$O(1)$
- How many cells are there in our table? $O(n C)$
- Total cost? $O(n C)$

Running Time

- Is $O(n C)$ polynomial? By which I mean polynomial in the size of the input
- What is the input? n items, plus C
- We need $O(n)$ size to store n items
- How much space to store C ? $\log _{2} C$ bits
- Is $O(n C)$ polynomial?

One table dimension depends on value of input, not input size

- Not polynomial in C, but polynomial in n
- "Pseudopolynomial" - polynomial in the value of the input
- To think about: does this work if the weights are not integers?

Recipe for a Dynamic Program

- Formulate the right subproblem. The subproblem must have an optimal substructure
- Formulate the recurrence. Identify how the result of the smaller subproblems can lead to that of a larger subproblem
- State the base case(s). The subproblem thats so small we know the answer to it!
- State the final answer. (In terms of the subproblem)
- Choose a memoization data structure. Where are you going to store already computed results? (Usually a table)
- Identify evaluation order. Identify the dependencies: which subproblems depend on which ones? Using these dependencies, identify an evaluation order
- Analyze space and running time. As always!

Acknowledgments

- Some of the material in these slides are taken from
- Kleinberg Tardos Slides by Kevin Wayne (https:/l www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/ 04GreedyAlgorithmsl.pdf)
- Jeff Erickson's Algorithms Book (http://jeffe.cs.illinois.edu/ teaching/algorithms/book/Algorithms-JeffE.pdf)
- Shikha Singh

