Dynamic Programming II: Edit Distance \& LIS

Admin

- Midterm Friday it goes out
- Will be released 4pm Friday; can be taken in any 24 hour period starting 4pm Friday and ending 10pm Wednesday
- No class on Monday
- Normal office hour schedule, plus I'll be available during what would have been class.
- Midterm will be like a "homework's greatest hits" Questions should be:
- Short and sweet
- Straightforward (which is different from easy!)

Today's Outline

- Edit distance
- Classic problem with many applications
- Requires a 2D memoization structure
- Longest Increasing Subsequence
- More DP practice

Edit Distance

Further Reading: Chapter 3.7, Erickson

Motivation

- Edit distance: is a metric that captures the similarity between two strings
β-globin gene

DNA sequencing: finding similarities between two genome sequences

Motivation

- Edit distance: is a metric that captures the similarity between two strings

Google

edite ditstance	\times
Q All \square Videos \square Images 国 News \odot Shopping $:$ More	Settings Tools

About 949,000,000 results (0.69 seconds)
Showing results for edit distance
Search instead for edite ditstance

Text processing: finding similar strings and NLP

Problem Defintion

Problem. Given two strings $A=a_{1} \cdot a_{2} \cdots a_{n}$ and $B=b_{1} \cdot b_{2} \cdots b_{m}$, find the edit distance between them.

- Edit distance between A and B is the smallest number of the following operations that are needed to transform A into B
- Replace a character (substitution)
- Delete a character
- Insert a character
riddle $\xrightarrow{\text { delete }(\mathrm{d})}$ ridle $\xrightarrow{\text { substitute }(\mathrm{d} \rightarrow \mathrm{p})}$ riple $\xrightarrow{\text { insert }(\mathrm{t})}$ triple

Edit distance(riddle, triple): 3

Structure of the Problem

Problem. Given two strings $A=a_{1} \cdot a_{2} \cdots a_{n}$ and $B=b_{1} \cdot b_{2} \cdots b_{m}$, find the edit distance between them.

- Notice that the process of getting from string A to string B by doing substitutions, inserts and deletes is reversible
- Inserts in one string correspond to deletes in another
riddle $\xrightarrow{\text { delete }(\mathrm{d})}$ ridle $\xrightarrow{\text { substitute }(\mathrm{d} \rightarrow \mathrm{p})}$ riple $\xrightarrow{\text { insert }(\mathrm{t})}$ triple
riddle $\stackrel{\text { insert(d) }}{\leftarrow}$ ridle substitute $(\mathrm{p} \rightarrow \mathrm{d})$ riple $\stackrel{\text { delete }(\mathrm{t})}{\longleftarrow}$ triple

Edit distance(riddle, triple): 3

Sequence Alignment

We can visualize the problem of finding the edit distance as an the problem of finding the best alignment between two strings

- Gaps in alignment represent inserts to top/deletes to bottom
- Mismatches in alignment represent substitutes
- Cost of an alignment = number of gaps + mismatches
- Edit distance: minimum cost alignment

Sequence Alignment

misspell

mis-pell
(1 gap)
aa-bb-ccaabb

ababbbc-a-b-
(5 gaps, 1 mm)
prin-cip-le

prinncipal-
(3 gaps, 0 mm)
prehistoric |||||||
---historic
(3 gaps)
al-go-rithm-
|| $\mathrm{xx} \mathrm{|\mid x} \mathrm{\mid}$
alKhwariz-mi
(4 gaps, 3 mm)

Sequence Alignment

Sequence Alignment Problem

Problem: Find an alignment of the two strings A, B where

- each character a_{i} in A is matched to a string b_{j} in B or unmatched
- each character b_{j} in B is matched to a string a_{i} in A or unmatched
- $\operatorname{cost}\left(a_{i}, b_{j}\right)=0$ if $a_{i}=b_{j}$, else $\operatorname{cost}\left(a_{i}, b_{j}\right)=1$
- cost of an unmatched letter (gap) $=1$
. Total cost $=$ \# unmatched $($ gaps $)+\sum_{a_{i} b_{j}} \operatorname{cost}\left(a_{i}, b_{j}\right)$
- Goal. Compute edit distance by finding an alignment of the minimum total cost

Recursive Structure

Before we develop a dynamic program, we need to figure out the recursive structure of the problem

- Our alignment representation has an optimal substructure:
- Suppose we have the mismatch/gap representation of the shortest edit sequence of two strings
- If we remove the last column, the remaining columns must represent the shortest edit sequence of the remaining prefixes!

$$
\begin{array}{|llllllll|l}
\hline A & L & G & O & R & & I & & T \\
\hline & \text { M } \\
A & L & & T & R & U & I & S & T \\
\hline
\end{array}
$$

Subproblem

- Subproblem

Edit (i, j) : edit distance between
the strings $a_{1} \cdot a_{2} \cdots a_{i}$ and $b_{1} \cdot b_{2} \cdots b_{j}$,
where $0 \leq i \leq n$ and $0 \leq j \leq m$

- Final answer
$\operatorname{Edit}(n, m)$

Base Cases

We have to fill out a two-dimensional array to memoize our recursive dynamic program.

- Which rows/columns can we fill immediately?
- Edit $(i, 0)$: Min number of edits to transform a string of length i to an empty string

$$
\begin{aligned}
& \mathrm{Edit}(i, 0)=i \text { for } 0 \leq i \leq n \\
& \operatorname{Edit}(0, j)=j \text { for } 0 \leq j \leq m
\end{aligned}
$$

Recurrence

Imagine the optimal alignment between the two strings

- What are the possibilities for the last column?
- It could be that both letters match: cost 0
- It could be that both letters do not match: cost 1
- It could be that there an unmatched character (gap): either from A or from B : cost 1

Break the possibilities down for the last column in the optimal alignment of $a_{1} \cdot a_{2} \cdots a_{i}$ and $b_{1} \cdot b_{2} \cdots b_{j}$:

- Case 1. Only one row has a character:
- Case 1a. Letter a_{i} is unmatched $\operatorname{Edit}(i, j)=\operatorname{Edit}(i-1, j)+1$
- Case 1b. Letter b_{j} is unmatched $\operatorname{Edit}(i, j)=\operatorname{Edit}(i, j-1)+1$

- Case 2: Both rows have characters:
- Case 2a. Same characters:

$$
\operatorname{Edit}(i, j)=\operatorname{Edit}(i-1, j-1)
$$

- Case 2b. Different characters: $\operatorname{Edit}(i, j)=\operatorname{Edit}(i-1, j-1)+1$

Final Recurrence

For $1 \leq i \leq n$ and $1 \leq j \leq m$, we have:

From Recurrence to DP

- We can now transform our recurrence into a dynamic program
- Memoization Structure: We can memoize all possible values of Edit (i, j) in a table/ two-dimensional array of size $O(n m)$:
- Store Edit $[i, j]$ in a 2D array; $0 \leq i \leq n$ and $0 \leq j \leq m$
- Evaluation order:
- Is interesting for a 2D problem
- Based on dependencies between subproblems
- We want referenced values to be already computed

From Recurrence to DP

Evaluation order

- We can fill in row major order, which is row by row from top down, each row from left to right
- With this order, when we reach an entry in the table, our recurrence references only filled-in entries

Space and Time

- The memoization uses $O(n m)$ space
- We can compute each Edit $[i, j]$ in $O(1)$ time
- Overall running time: $O(n m)$

Memoization Table: Example

- Memoization table for ALGORITHM and ALTRUISTIC
- Bold numbers indicate where characters are same
- Horizontal arrow: deletion in A
- Vertical arrow: insertion in A
- Diagonal: substitution
- Bold red: free substitution
- Only draw an arrow if used in DP
- Any directed path of arrows from top left to bottom right represents an optimal edit distance sequence

Reconstructing the Edits

- We don't need to store the arrow!
- An arrow can be reconstructed on the fly in $O(1)$ time using the numerical values
- Once the table is built, we can construct the shortest edit distance sequence in $O(n+m)$ time
- Does this remind you of any other dynamic programs we've seen?

Longest Increasing Subsequence

Further Reading: Chapter 3.7, Erickson

Longest Increasing Subsequence

Problem: Given a sequence of integers as an array $A[1, \ldots n]$, find the longest subsequence whose elements are in increasing order

To simplify, we will only compute length of the LIS

Formalize the Subproblem

$L[i]$: length of the longest increasing subsequence in $A[1, \ldots, i]$ that ends at (and includes) $A[i]$

Identify the Base Case

$L[i]$: length of the longest increasing subsequence in A that ends at (and includes) $A[i]$

Base Case. $L[1]=$?

Identify the Final Answer

$L[i]$: length of the longest increasing subsequence in A that ends at (and includes) $A[i]$

Base Case. $L[1]=1$

Final answer. ?

Base Case \& Final Answer

$L[i]$: length of the longest increasing subsequence in A that ends at (and includes) $A[i]$

Base Case. $L[1]=1$

Final answer. $\quad \max L[i]$
$1 \leq i \leq n$

Recurrence

How do we go from one subproblem to the next?

- That is, how do we compute $L[i]$ assuming I know the values of $L[1], \ldots, L[i-1]$

12103764811

Length of the LIS ending at 2 ?

Length of the LIS ending at 10 ?

- Let's say we know the length of the longest subsequence ending at $A[1], A[2], \ldots A[i-1]$
- What is the longest subsequence ending at $A[i]$? Either:
- $A[i]$ could potentially extend an earlier subsequence:
- Can extend a longest subsequence ending at some $A[k]$, with $A[k]<A[i]$, but which k ?
- We could try all k to get the answer
- Or $A[i]$ could start a new subsequence (i.e., it doesn't extend any earlier increasing subsequence)

Example: Building a Recurrence

$L[i]$: length of the longest increasing subsequence in A that ends at (and includes) $A[i]$

Example: Building a Recurrence

$L[i]$: length of the longest increasing subsequence in A that ends at (and includes) $A[i]$

Example: Building a Recurrence

$L[i]$: length of the longest increasing subsequence in A that ends at (and includes) $A[i]$

Example: Building a Recurrence

$L[i]$: length of the longest increasing subsequence in A that ends at (and includes) $A[i]$

How do we know 3 extends a past LIS?

Example: Building a Recurrence

$L[i]$: length of the longest increasing subsequence in A that ends at (and includes) $A[i]$

$L[j]$ extends an LIS ending at $L[i]$ if $A[j]>A[i]$

Example: Building a Recurrence

$L[i]$: length of the longest increasing subsequence in A that ends at (and includes) $A[i]$

$L[j]$ extends an LIS ending at $L[i]$ if $A[j]>A[i]$

Example: Building a Recurrence

$L[i]$: length of the longest increasing subsequence in A that ends at (and includes) $A[i]$

> A
> $L[j]$ extends an LIS ending at $L[i]$ if $A[j]>A[i]$

Example: Building a Recurrence

$L[i]$: length of the longest increasing subsequence in A that ends at (and includes) $A[i]$

$L[j]$ extends an LIS ending at $L[i]$ if $A[j]>A[i]$

LIS: Recurrence

$L[j]=1+\max \{L[i] \mid i<j$ and $A[i]<A[j]\}$ Assuming $\max \varnothing=0$

Recursion \rightarrow DP

- If we used recursion (without memoization) we'll be inefficient-we'll do a lot of repeated work
- Once you have your recurrence, the remaining pieces of the dynamic programming algorithm are
- Evaluation order. In what order should I evaluate my subproblems so that everything I need is available to evaluate a new subproblem?
- For LIS we just left-to-right on array indices
- Memoization structure. Need a table (array or multi-dimensional array) to store computed values
- For LIS, we just need a one dimensional array
- For others, we may need a table (two-dimensional array)

LIS Analysis

- Correctness
- Follows from the recurrence using induction
- Running time?
- Solve $O(n)$ subproblems
- Each one requires $O(n)$ time to take the min
- $O\left(n^{2}\right)$
- Space?
- $O(n)$ to store array $L[]$

Recipe for a Dynamic Program

- Formulate the right subproblem. The subproblem must have an optimal substructure
- Formulate the recurrence. Identify how the result of the smaller subproblems can lead to that of a larger subproblem
- State the base case(s). The subproblem thats so small we know the answer to it!
- State the final answer. (In terms of the subproblem)
- Choose a memoization data structure. Where are you going to store already computed results? (Usually a table)
- Identify evaluation order. Identify the dependencies: which subproblems depend on which ones? Using these dependencies, identify an evaluation order
- Analyze space and running time. As always!

Acknowledgments

- Some of the material in these slides are taken from
- Kleinberg Tardos Slides by Kevin Wayne (https:/l www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/ 04GreedyAlgorithmsl.pdf)
- Jeff Erickson's Algorithms Book (http://jeffe.cs.illinois.edu/ teaching/algorithms/book/Algorithms-JeffE.pdf)
- Shikha Singh

