Dynamic Programming II: Edit Distance & LIS

Admin

- Midterm Friday it goes out
 - Will be released 4pm Friday; can be taken in any 24 hour period starting 4pm Friday and ending 10pm Wednesday
 - No class on Monday
 - Normal office hour schedule, plus I'll be available during what would have been class.
 - Midterm will be like a "homework's greatest hits"
 Questions should be:
 - Short and sweet
 - Straightforward (which is different from easy!)

Today's Outline

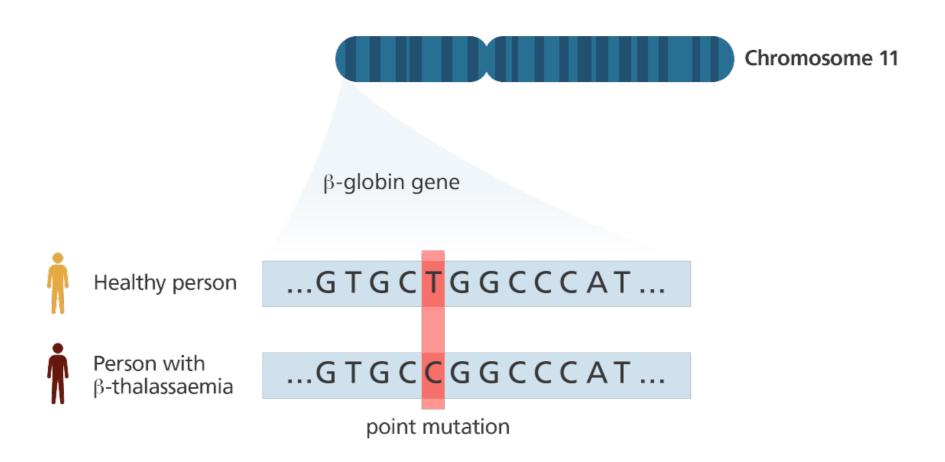
- Edit distance
 - Classic problem with many applications
 - Requires a 2D memoization structure
- Longest Increasing Subsequence
 - More DP practice

Edit Distance

Further Reading: Chapter 3.7, Erickson

Motivation

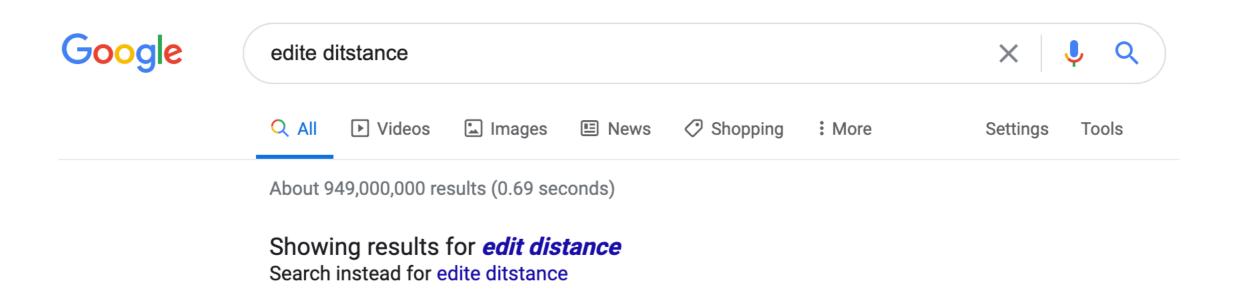
 Edit distance: is a metric that captures the similarity between two strings



DNA sequencing: finding similarities between two genome sequences

Motivation

• Edit distance: is a metric that captures the similarity between two strings



Text processing: finding similar strings and NLP

Problem Defintion

Problem. Given two strings $A = a_1 \cdot a_2 \cdot \cdots \cdot a_n$ and $B = b_1 \cdot b_2 \cdot \cdots \cdot b_m$, find the **edit distance** between them.

- Edit distance between A and B is the smallest number of the following operations that are needed to transform A into B
 - Replace a character (substitution)
 - Delete a character
 - Insert a character

riddle
$$\xrightarrow{\text{delete(d)}}$$
 ridle $\xrightarrow{\text{substitute(d} \rightarrow p)}$ riple $\xrightarrow{\text{insert(t)}}$ triple

Edit distance(riddle, triple): 3

Structure of the Problem

Problem. Given two strings $A = a_1 \cdot a_2 \cdot \cdots \cdot a_n$ and $B = b_1 \cdot b_2 \cdot \cdots \cdot b_m$, find the **edit distance** between them.

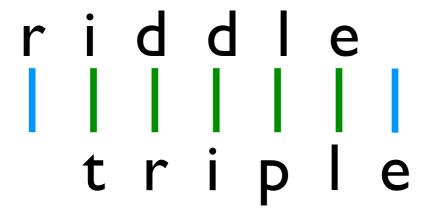
- Notice that the process of getting from string A to string B by doing substitutions, inserts and deletes is **reversible**
- Inserts in one string correspond to deletes in another

Edit distance(riddle, triple): 3

Sequence Alignment

We can visualize the problem of finding the edit distance as an the problem of finding the best **alignment** between two strings

- Gaps in alignment represent inserts to top/deletes to bottom
- Mismatches in alignment represent substitutes
 - Cost of an alignment = number of gaps + mismatches
- Edit distance: minimum cost alignment



$$cost = 7$$

$$cost = 3$$

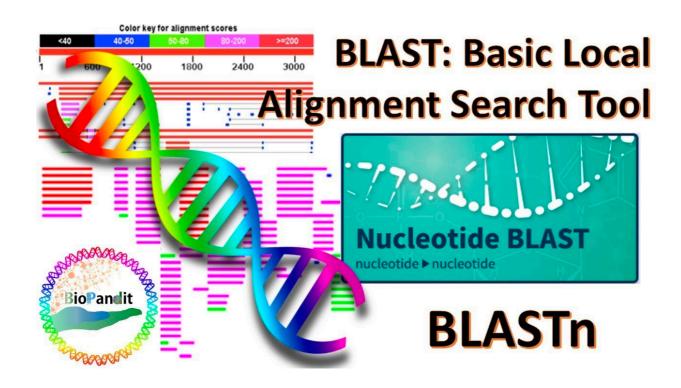
Sequence Alignment

```
prin-ciple
                          prin-cip-le
prinncipal
                          prinncipal-
(1 \text{ gap}, 2 \text{ mm})
                           (3 gaps, 0 mm)
misspell
                          prehistoric
                          ---historic
mis-pell
(1 gap)
                          (3 gaps)
aa-bb-ccaabb
                          al-go-rithm-
                           alKhwariz-mi
ababbbc-a-b-
(5 gaps, 1 mm)
                           (4 gaps, 3 mm)
```

Sequence Alignment

>gb|AC115706.7| Mus musculus chromosome 8, clone RP23-382B3, complete sequence

Query	1650	gtgtgtgtgggtgcacatttgtgtgtgtgtgcgcctgtgtgtg	1709
Sbjct	56838	GTGTGTGTGGAAGTGAGTTCATCTGTGTGTGCACATGTGTGCATGCATGCATGTGT	56895
Query	1710	gtg-gggcacatttgtgtgtgtgtgtgcctgtgtgtgggtgcacatttgtgtgtg	1768
Sbjct	56896	GTCCGGGCATGCATGTCTGTGTGTGTGTGTGTGTGTGTGTGTGTGAGTAC	56947
Query	1769	ctgtgtgtgtgtgcctgtgtgtgggggtgcacatttgtgtgtg	1828
Sbjct	56948	CTGTGTGTGTATGCTTGTGTGTGTGTGTGTGTGTGTGTGT	57007



Sequence Alignment Problem

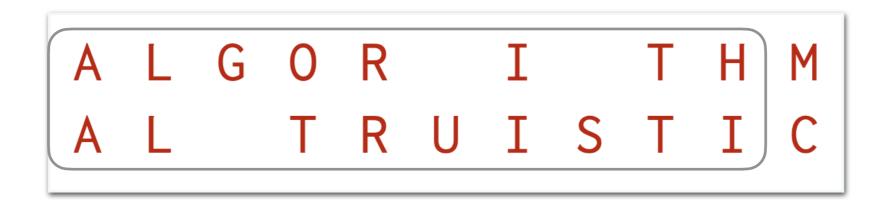
Problem: Find an alignment of the two strings A, B where

- each character a_i in A is matched to a string b_j in B or unmatched
- each character b_j in \boldsymbol{B} is matched to a string a_i in \boldsymbol{A} or unmatched
- $cost(a_i,b_j)=0$ if $a_i=b_j$, else $cost(a_i,b_j)=1$
- cost of an unmatched letter (gap) = 1
- Total cost = # unmatched (gaps) + \sum_{a_i,b_j} cost (a_i,b_j)
- Goal. Compute edit distance by finding an alignment of the minimum total cost

Recursive Structure

Before we develop a dynamic program, we need to figure out the recursive structure of the problem

- Our alignment representation has an optimal substructure:
 - Suppose we have the mismatch/gap representation of the shortest edit sequence of two strings
 - If we remove the last column, the remaining columns must represent the shortest edit sequence of the remaining prefixes!



Subproblem

Subproblem

```
Edit(i,j): edit distance between the strings a_1 \cdot a_2 \cdot \cdots \cdot a_i and b_1 \cdot b_2 \cdot \cdots \cdot b_j, where 0 \le i \le n and 0 \le j \le m
```

Final answer

Edit(n, m)

Base Cases

We have to fill out a two-dimensional array to memoize our recursive dynamic program.

- Which rows/columns can we fill immediately?
- Edit(i,0): Min number of edits to transform a string of length i to an empty string

$$\operatorname{Edit}(i, 0) = i \text{ for } 0 \le i \le n$$

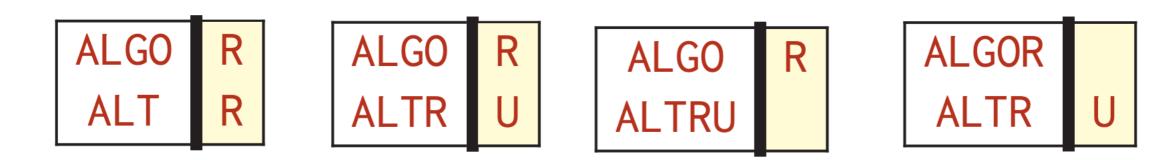
$$\operatorname{Edit}(0, j) = j \text{ for } 0 \le j \le m$$

$$Edit(0, j) = j \text{ for } 0 \le j \le m$$

Recurrence

Imagine the optimal alignment between the two strings

- What are the possibilities for the last column?
 - It could be that both letters match: cost 0
 - It could be that both letters do not match: cost 1
 - It could be that there an unmatched character (gap):
 either from A or from B: cost 1



Recurrence

Break the possibilities down for the last column in the optimal alignment of $a_1 \cdot a_2 \cdot \cdot \cdot \cdot a_i$ and $b_1 \cdot b_2 \cdot \cdot \cdot \cdot b_j$:

- Case 1. Only one row has a character:
 - Case 1a. Letter a_i is unmatched $\operatorname{Edit}(i,j) = \operatorname{Edit}(i-1,j) + 1$
 - Case 1b. Letter b_j is unmatched $\operatorname{Edit}(i,j) = \operatorname{Edit}(i,j-1) + 1$
- Case 2: Both rows have characters:
 - Case 2a. Same characters: Edit(i, j) = Edit(i - 1, j - 1)
 - Case 2b. Different characters: Edit(i, j) = Edit(i - 1, j - 1) + 1

ALGO R
ALT R

ALGO R ALTR U

Final Recurrence

For $1 \le i \le n$ and $1 \le j \le m$, we have:

$$\operatorname{Edit}(i,j) = \min \left\{ \begin{array}{c} \operatorname{Edit}(i,j-1) + 1 \\ \operatorname{Edit}(i-1,j) + 1 \\ \operatorname{Edit}(i-1,j-1) + (a_i \neq b_j) \end{array} \right.$$

Uses the shorthand: $(a_i \neq b_j)$ which is 1 if it is true (i.e., they mismatch), and zero otherwise

From Recurrence to DP

- We can now transform our recurrence into a dynamic program
- Memoization Structure: We can memoize all possible values of Edit(i, j) in a table/ two-dimensional array of size O(nm):
 - Store Edit[i, j] in a 2D array; $0 \le i \le n$ and $0 \le j \le m$

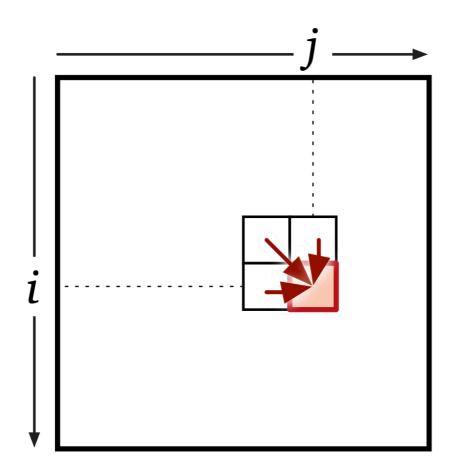
Evaluation order

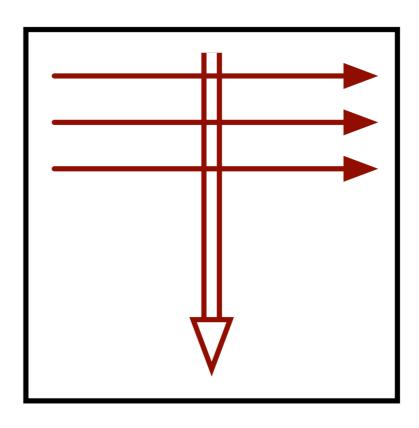
- Is interesting for a 2D problem
- Based on dependencies between subproblems
- We want referenced values to be already computed

From Recurrence to DP

Evaluation order

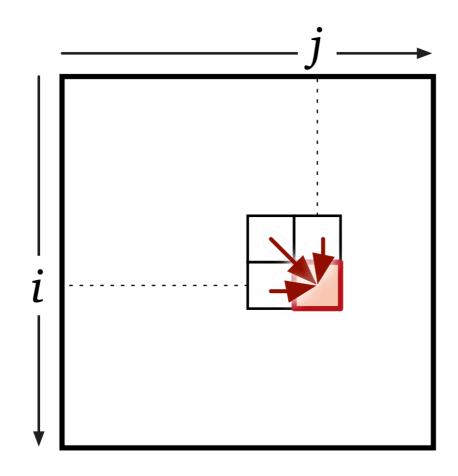
- We can fill in row major order, which is row by row from top down, each row from left to right
 - With this order, when we reach an entry in the table, our recurrence references only filled-in entries

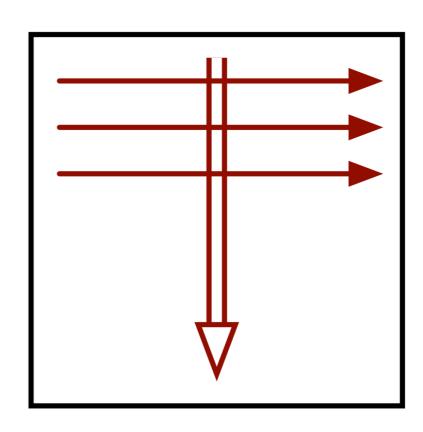




Space and Time

- The memoization uses O(nm) space
- We can compute each $\operatorname{Edit}[i,j]$ in O(1) time
- Overall running time: O(nm)





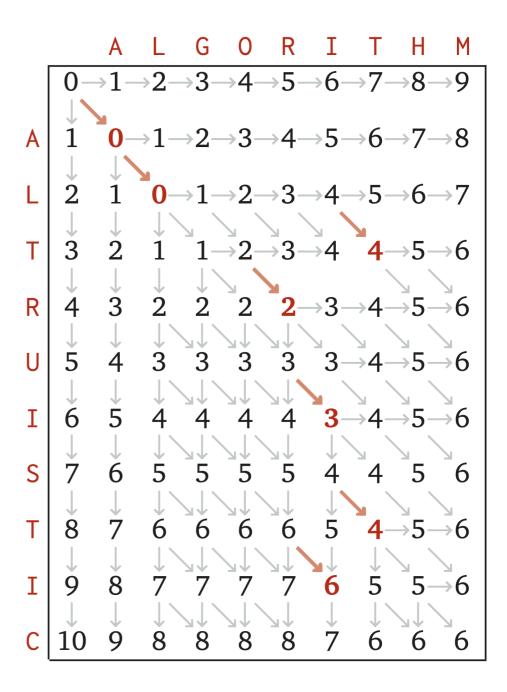
Memoization Table: Example

- Memoization table for ALGORITHM and ALTRUISTIC
- Bold numbers indicate where characters are same
- Horizontal arrow: deletion in A
- Vertical arrow: insertion in A
- Diagonal: substitution
- Bold red: free substitution
- Only draw an arrow if used in DP
- Any directed path of arrows from top left to bottom right represents an optimal edit distance sequence

```
\rightarrow1\rightarrow2\rightarrow3\rightarrow4\rightarrow5\rightarrow6\rightarrow7\rightarrow8\rightarrow9
       0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8
                                                                   \rightarrow4\rightarrow5\rightarrow6\rightarrow7
```

Reconstructing the Edits

- We don't need to store the arrow!
- An arrow can be reconstructed on the fly in O(1) time using the numerical values
- Once the table is built, we can construct the shortest edit distance sequence in O(n+m) time
- Does this remind you of any other dynamic programs we've seen?



Longest Increasing Subsequence

Further Reading: Chapter 3.7, Erickson

Longest Increasing Subsequence

Problem: Given a sequence of integers as an array A[1,...n], find the longest subsequence whose elements are in increasing order

An increasing subsequence with length 4

1 2 10 3 7 6 4 8 **11**

Longest Increasing
Subsequence: length 6

1 2 10 3 7 6 4 8 11

(Stated more formally...) Find the longest possible sequence of indices $1 \le i_1 < i_2 < \ldots < i_\ell \le n$ such that $A[i_k] < A[i_{k+1}]$

To simplify, we will only compute length of the LIS

Formalize the Subproblem

L[i]: length of the longest increasing subsequence in A[1,...,i] that ends at (and includes) A[i]

Identify the Base Case

L[i]: length of the longest increasing subsequence

in A that ends at (and includes) A[i]

Base Case. L[1] = ?

Identify the Final Answer

L[i]: length of the longest increasing subsequence

in A that ends at (and includes) A[i]

Base Case.
$$L[1] = 1$$

Final answer. ?

Base Case & Final Answer

L[i]: length of the longest increasing subsequence

in A that ends at (and includes) A[i]

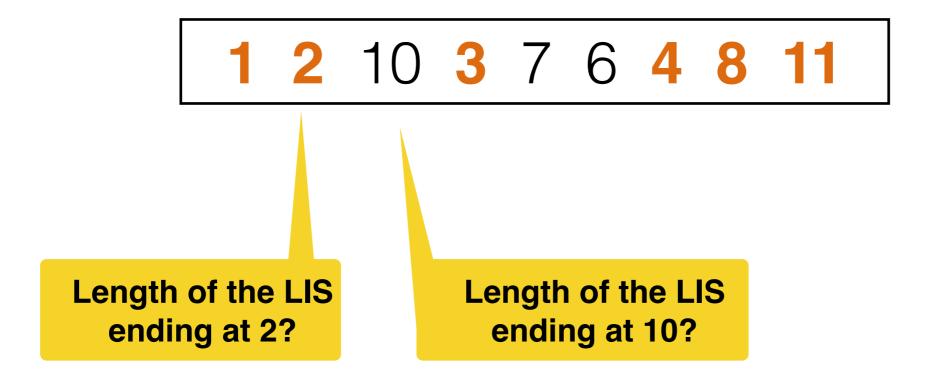
Base Case.
$$L[1] = 1$$

Final answer. $\max_{1 \le i \le n} L[i]$

Recurrence

How do we go from one subproblem to the next?

• That is, how do we compute L[i] assuming I know the values of $L[1], \ldots, L[i-1]$

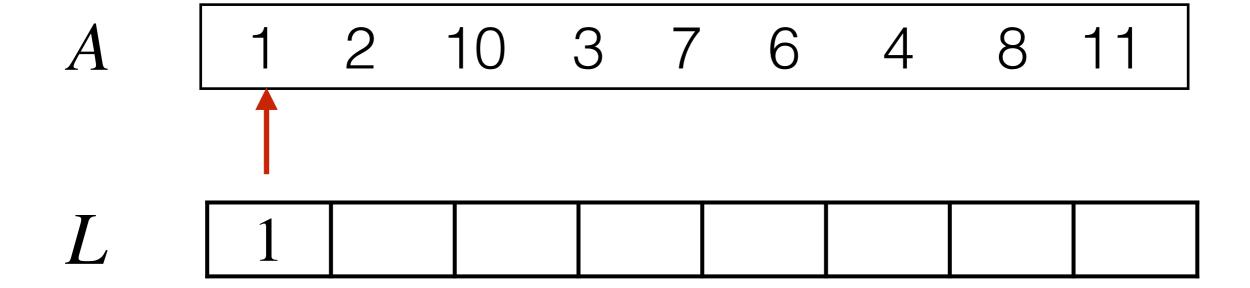


Recurrence

- Let's say we know the length of the longest subsequence ending at A[1], A[2], ...A[i-1]
- What is the longest subsequence ending at A[i]? Either:
- A[i] could potentially extend an earlier subsequence:
 - Can extend a longest subsequence ending at some A[k], with A[k] < A[i], but which k?
 - We could try all k to get the answer
- Or A[i] could start a new subsequence (i.e., it doesn't extend any earlier increasing subsequence)

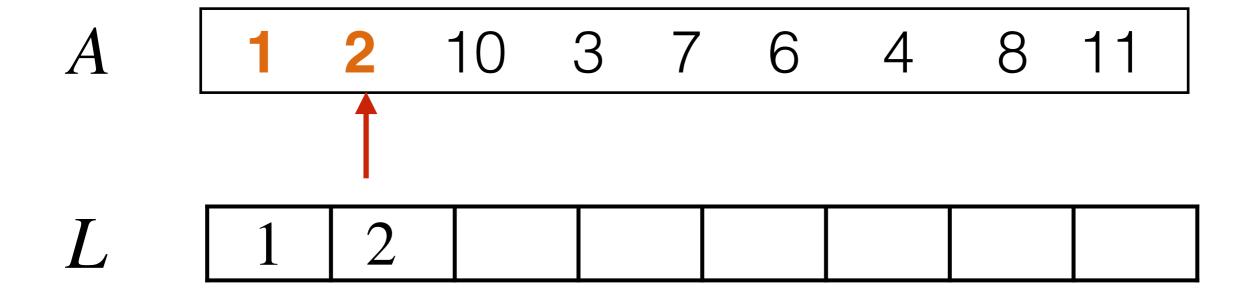
L[i]: length of the longest increasing subsequence in

A that ends at (and includes) A[i]



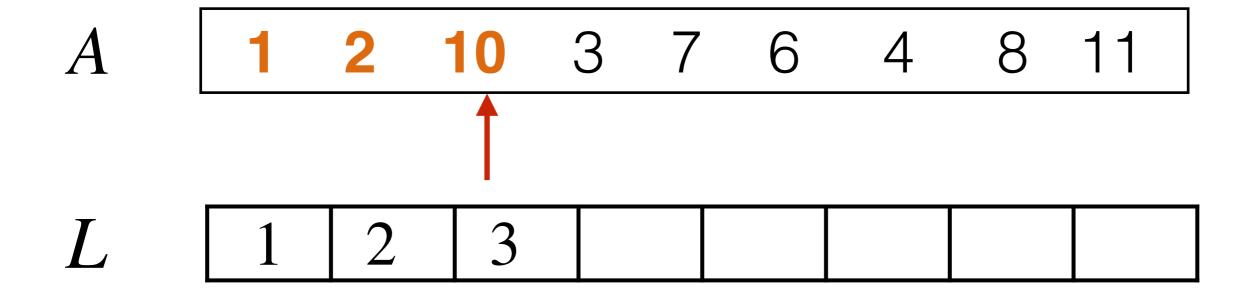
L[i]: length of the longest increasing subsequence in

A that ends at (and includes) A[i]



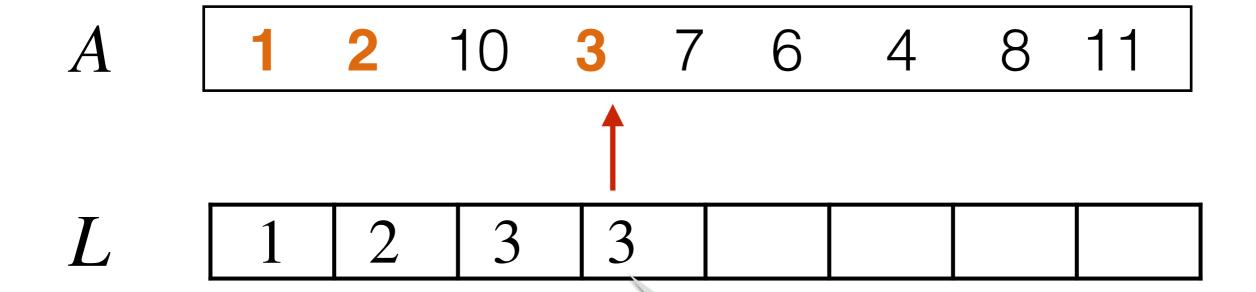
L[i]: length of the longest increasing subsequence in

A that ends at (and includes) A[i]



L[i]: length of the longest increasing subsequence in

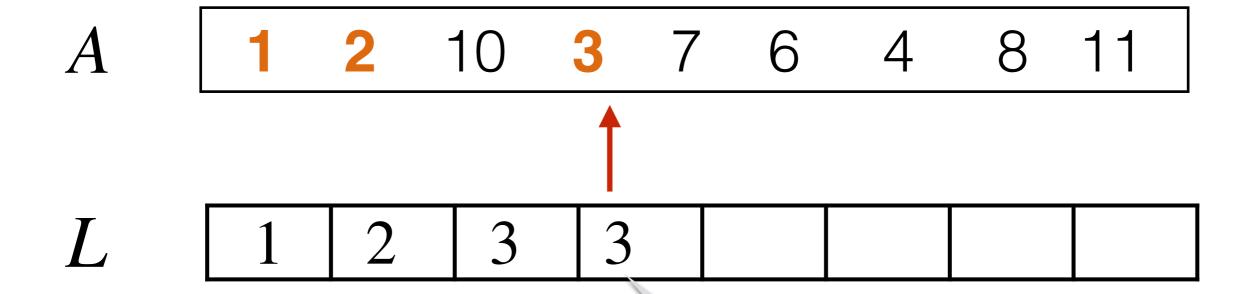
A that ends at (and includes) A[i]



How do we know 3 extends a past LIS?

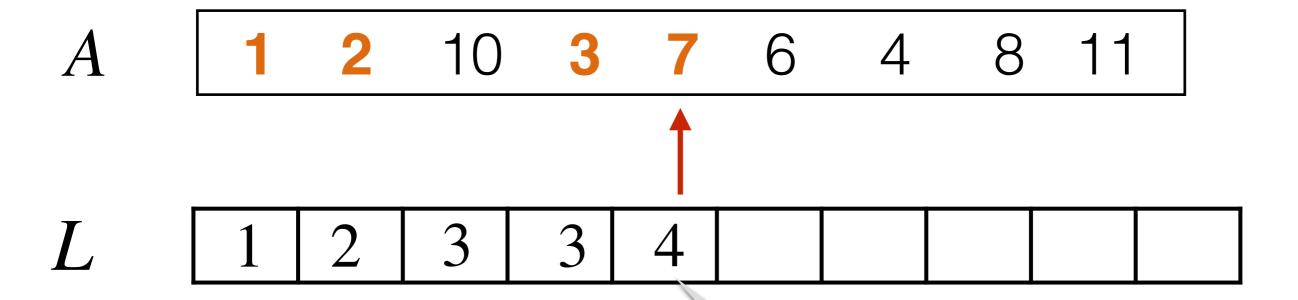
L[i]: length of the longest increasing subsequence in

A that ends at (and includes) A[i]



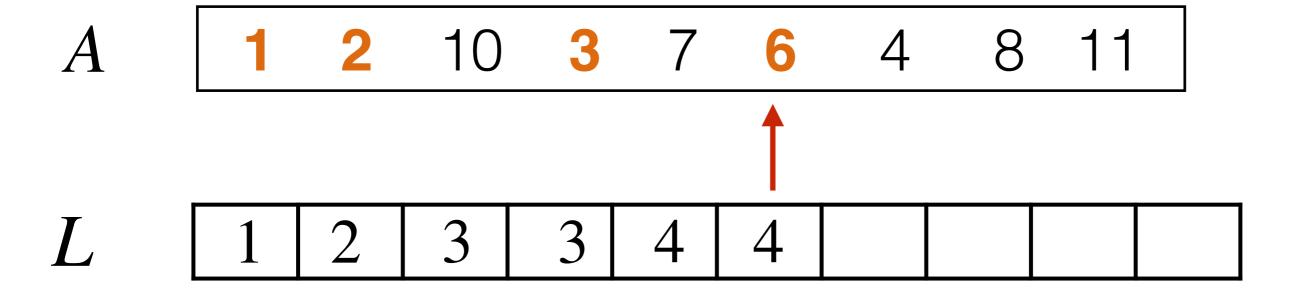
L[i]: length of the longest increasing subsequence in

A that ends at (and includes) A[i]



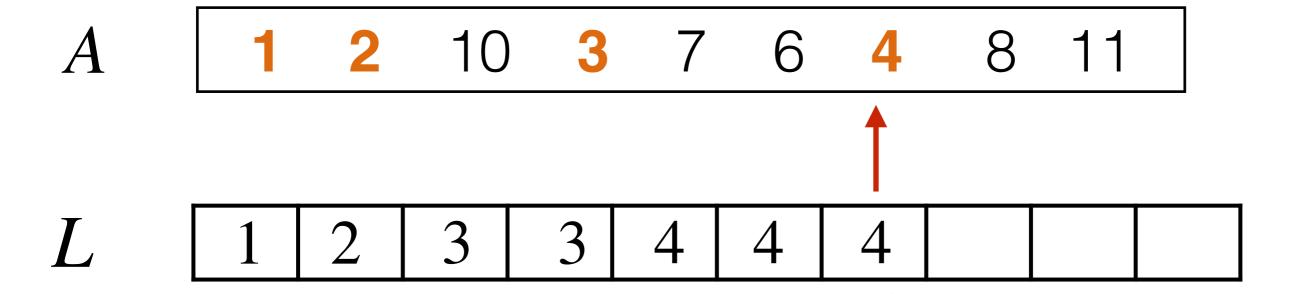
L[i]: length of the longest increasing subsequence in

A that ends at (and includes) A[i]



L[i]: length of the longest increasing subsequence in

A that ends at (and includes) A[i]



LIS: Recurrence

```
L[j] = 1 + \max\{L[i] \mid i < j \text{ and } A[i] < A[j]\} Assuming \max \emptyset = 0
```

Recursion → DP

- If we used recursion (without memoization) we'll be inefficient—we'll do a lot of repeated work
- Once you have your recurrence, the remaining pieces of the dynamic programming algorithm are
 - Evaluation order. In what order should I evaluate my subproblems so that everything I need is available to evaluate a new subproblem?
 - For LIS we just left-to-right on array indices
 - Memoization structure. Need a table (array or multi-dimensional array) to store computed values
 - For LIS, we just need a one dimensional array
 - For others, we may need a table (two-dimensional array)

LIS Analysis

- Correctness
 - Follows from the recurrence using induction
- Running time?
 - Solve O(n) subproblems
 - Each one requires O(n) time to take the min
 - $O(n^2)$
- Space?
 - O(n) to store array L[]

Recipe for a Dynamic Program

- Formulate the right subproblem. The subproblem must have an optimal substructure
- Formulate the recurrence. Identify how the result of the smaller subproblems can lead to that of a larger subproblem
- State the base case(s). The subproblem thats so small we know the answer to it!
- State the final answer. (In terms of the subproblem)
- Choose a memoization data structure. Where are you going to store already computed results? (Usually a table)
- Identify evaluation order. Identify the dependencies: which subproblems depend on which ones? Using these dependencies, identify an evaluation order
- Analyze space and running time. As always!

Acknowledgments

- Some of the material in these slides are taken from
 - Kleinberg Tardos Slides by Kevin Wayne (https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsl.pdf)
 - Jeff Erickson's Algorithms Book (http://jeffe.cs.illinois.edu/
 teaching/algorithms/book/Algorithms-JeffE.pdf)
 - Shikha Singh