Divide and Conquer: Sorting and Recurrences

Divide \& Conquer: The Pattern

- Divide the problem into several independent smaller instances of exactly the same problem
- Delegate each smaller instance to the Recursive Leap of Faith (technically known as induction hypothesis)
- Combine the solutions for the smaller instances

Review: Merge Sort

MergeSort(L):
if L has one element return L

Base case

Divide L into two halves A and B
$A \leftarrow \operatorname{MergeSort}(A)$

$B \leftarrow \operatorname{MergeSort}(B)$
$L \leftarrow \operatorname{Merge}(A, B)$
return L

Merge Step: $\Theta(n)$

- Scan sorted lists from left to right
- Compare element by element; create new merged list

Merge Step: $\Theta(n)$

```
Is \(a[i]<=b[j]\) ?
```

- Yes, $a[i]$ appended to c, advance i
- No, b[j] appended to c, advance j

merged list c

Merge Step: $\Theta(n)$

```
Is \(a[i]<=b[j]\) ?
```

- Yes, $a[i]$ appended to c, advance i
- No, b[j] appended to c, advance j

merged list c

Merge Step: $\Theta(n)$

Is $a[i]<=b[j]$?

- Yes, $a[i]$ appended to c, advance i
- No, b[j] appended to c, advance j

merged list c

Merge Step: $\Theta(n)$

Is $a[i]<=b[j]$?

- Yes, $a[i]$ appended to c, advance i
- No, b[j] appended to c, advance j

merged list c

Merge Step: $\Theta(n)$

Is $a[i]<=b[j]$?

- Yes, $a[i]$ appended to c, advance i
- No, b[j] appended to c, advance j

merged list c

Merge Step: $\Theta(n)$

Is $a[i]<=b[j]$?

- Yes, $a[i]$ appended to c, advance i
- No, b[j] appended to c, advance j

merged list c

Yada yada yada...

Merge Step: $\Theta(n)$

```
Is \(a[i]<=b[j]\) ?
```

- Yes, $a[i]$ appended to c, advance i
- No, b[j] appended to c, advance j

merged list c

Correctness: D\&C Algorithms

- Proving Correctness (often follow proof by induction pattern)
- Show base case holds
- Assume your recursive calls return the correct solution (induction hypothesis)
- Inductive step: crux of the proof
- Must show that the solutions returned by the recursive calls are "combined" correctly

Correctness Sketch: Merge Sort

- Claim. (Combine step.) Merge subroutine correctly merges two sorted subarrays $A[1, \ldots i]$ and $B[1, \ldots, j]$ where $i+j=n$.
- Will prove that for the first k iterations of the loop, correctly merges A and B (from $n=0$ to $n=k$).
- Invariant: Merged array is sorted after every iteration.
- Base case: $k=0$
- Algorithm correctly merges two empty subarrays
- For inductive step, there are multiple cases, including $a_{i} \leq b_{j}, a_{i}>b_{j}$
- for each case, must show that newly added element maintains sorted-ness

Analyzing Running Time

- For this topic, our main focus will be on analysis of running time
- We analyze the running time of recursive functions by:
- Considering the recursive calls: both the number of calls made and the size of the inputs to each call
- e.g., merge sort on an input of size n makes two recursive calls each on an input of size $n / 2$
- The time spent "combining" solutions ("non-recursive work") returned by recursive calls
- e.g. merge step combines the sorted arrays in $\Theta(n)$ time
- Using the two, we typically write a running time recurrence

Running Time Recurrence

- Let $T(n)$ represent the worst-case running time of merge sort on an input of size n
- $T(n)=T(\lceil n / 2\rceil)+T(\lfloor n / 2\rfloor)+O(n)$
- Base case: $T(1)=1$; often ignored
- We will ignore the floors and ceilings (turns out it doesn't matter for asymptotic bounds; we'll show this later)
- So the recurrence simplifies to:
- $T(n)=2 T(n / 2)+O(n)$
- The answer to this ends up being $T(n)=O(n \log n)$
- The next slides will discuss different ways to derive this

Method 1. Unfolding the recurrence

- Assume $n=2^{\ell}$ (that is, $\ell=\log n$)
- Because we don't care about constant factors and are only upperbounding, we can always choose smallest power of 2 that is greater than n. That is, $n<n^{\prime}=2^{\ell}<2 n$
- We can explicitly add in our constants

$$
\begin{aligned}
T(n) & =2 T(n / 2)+c n=2 T\left(2^{\ell-1}\right)+c 2^{\ell}(\text { change of variable, replace } n) \\
& =2\left(2 T\left(2^{\ell-2}\right)+c 2^{\ell-1}\right)+c 2^{\ell}=2^{2} T\left(2^{\ell-2}\right)+2 \cdot c 2^{\ell} \\
& =2^{3} T\left(2^{\ell-3}\right)+3 \cdot c 2^{\ell} \\
& =\cdots \\
& =2^{\ell} T\left(2^{0}\right)+c \ell 2^{\ell}=O(n \log n)
\end{aligned}
$$

Recurrences: Recursion Tree

Method 2. Recursion Trees

- Work done at each level $2^{i} \cdot\left(n / 2^{i}\right)=n$
- Total $\log _{2} n$ levels

Recommended Method!

Recurrences: Recursion Tree

- This is really a method of visualization
- Very similar to unrolling, but much easier to keep track of what's going on
- It's not (quite) a proof, but generally it is sufficient for reasoning about running times in this class
- "Solve the recurrence" can be done by drawing the recursion tree and explaining the solution

Recurrences: Guess \& Verify

Method 3. Guess and Verify

- Eyeball recurrence and make a guess
- Verify guess using induction
- More on this later...

(Anonymous) Feedback!

- What aspect(s) of the course do you like most?
- What aspect(s) of the course do you like least?
- In what CS courses that you've taken so far have you needed to spend more time than you have in this course?
- In what CS courses that you've taken so far have you needed to spend less time than you have in this course?
- Is there anything that you'd like me to know at this point in the semester?

Acknowledgments

- Some of the material in these slides are taken from
- Kleinberg Tardos Slides by Kevin Wayne (https:/l www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/ 04GreedyAlgorithmsl.pdf)
- Jeff Erickson's Algorithms Book (http://jeffe.cs.illinois.edu/ teaching/algorithms/book/Algorithms-JeffE.pdf)

