
Greedy Graph Algorithms:
Kruskal’s Algorithm for MSTs



Reminders/Logistics
• Homework feedback process did not go as planned. Debugging meeting this 

afternoon. Stay tuned… 
• Homework 3 due tonight 10 pm 

• See notes in email 
• Homework 4 on greedy algorithms will be released tonight 

• “Lighter” than previous problem set so you can maximize reading period 
• Mask policy: 

• Everyone is invited to wear a mask in class, but you are not required to 
do so. Please respect others. 

• Tomorrow I will get clarification about the CS lab space policies 
• Announcements?



Today’s Plan
Kruskal’s Algorithm & the Union-Find Data structure 
• Review proofs from activity (or similar variants) 
• (Briefly) Review Kruskal’s algorithm to motivate 
• (Briefly) Review Heaps 
• Iterate on data structure designs to arrive at 

efficient Union-Find



Activity Review: MWSS are Trees
Prove.  In a weighted, undirected graph  that has strictly 
positive edge weights, a minimum weight spanning subgraph must 
always be a tree. 

Proof. (By contradiction)  

Suppose  has some MWSS, , that is not a tree. 

This means that the set  connects all vertices in , and that  
contains at least one cycle. Without loss of generality, let the vertices 

 define some cycle in .  

Suppose we remove edge  from .  

The resulting graph  is still connected, (Why?) so it is 
still a spanning subgraph. 

However, the weight of  is less than the weight of , since all edge 
weights are positive, including . This is a contradiction, since  is a 
minimum weight spanning subgraph.

G = (V, E)

G S = (V, E′ )
E′ V S

v1, …, vn, v1 S
e = (v1, vn) S

S′ = (V, E′ − e)

S′ S
e S



Activity Review: Cut Property
Recall.  A cut is a partition of the vertices into two nonempty 
subsets  and .  A cut edge of a cut  is an edge with one 
end point in  and another in . 

Lemma (Cut Property).  For any cut , let  be the 
minimum weight edge connecting any vertex in  to a vertex in 

, then every minimum spanning tree must include . 

Proof. (By contradiction)  

Suppose  is a spanning tree that does not contain .   

Main Idea: We will construct another spanning tree 
 with weight less than   

Question: How to find such an edge 

S V − S S
S V − S

S ⊂ V e = (u, v)
S

V − S e

T e = (u, v)

T′ = T ∪ e − e′ T ( ⇒⇐ )
e′ ?



Activity Review: Cut Property
Proof (Cut Property).  (By contradiction.) 

Suppose  is a spanning tree that does not contain .  

• Adding  to  results in a unique cycle   

• Cycle  must “enter” and “leave” cut , that is,  
s.t.  

•   (Why?) 

•  is  
a spanning tree (Why?) 

•    

T e = (u, v)

e T C

C S ∃e′ = (u′ , v′ ) ∈ C
u′ ∈ S, v′ ∈ V − S

w(e′ ) > w(e)

T′ = T ∪ e − e′ 

w(T′ ) < w(T ) ( ⇒⇐ ) ∎



Kruskal’s Algorithm



CS136 Review: Priority Queue
Priority Queues manage a set  of items and the following operations 
on : 

• Insert. Insert a new element into  

• Delete. Delete an element from 

• Extract. Retrieve highest priority element in 

Priorities are encoded as a ‘key’ value 

Typically: higher priority <—> lower key value (MinHeap)

Heap as Priority Queue. Combines tree structure with array access 

• Insert and delete:  time (‘tree’ traversal & moves) 

• Extract min. Delete item with minimum key value: 

S
S

S
S

S

O(log n)
O(log n)



Heap Example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3 7 5 11 17 14 30 21 35 24 19 22 - - - -H

Heap property:  For every element , at node , the 
element  at ’s parent satisfies key( key(

v i
w i w) ≤ v)

Element with smallest key



Kruskal’s Algorithm
Idea: Add the cheapest remaining edge that does not create a cycle. 
• Initialize ,  

• While : 

• Remove cheapest edge  from  

• If adding  to  does not create a cycle  

•  

•

T = ∅ H ← E
|T | < n − 1

e H
e T

T ← T ∪ {e}
H ← H − {e}
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• While : 

• Remove cheapest edge  from  

• If adding  to  does not create a 
cycle  

•  

•

T = ∅ H ← E
|T | < n − 1

e H
e T

T ← T ∪ {e}
H ← H − {e}



A

D

F

B

7

6

4

E

10

C

5

G

8

Idea: Add the cheapest remaining edge that 
does not create a cycle. 
• Initialize ,  

• While : 

• Remove cheapest edge  from  

• If adding  to  does not create a 
cycle  

•  

•

T = ∅ H ← E
|T | < n − 1

e H
e T

T ← T ∪ {e}
H ← H − {e}

Total weight:  40 



Kruskal’s Analysis
• Correctness:  Does it give us the correct MST?   

• Key Question: Why is each edge  that we are adding safe? 

• Consider the step just before  is added 

• Let  

• This is a valid cut in the graph (Why? Can ?) 

• If there was a cheaper cut edge for cut  which did 
not form a cycle, the algorithm would have already added it; 
this must be the min-cost cut edge for this cut 

• Runtime.  

• How quickly can we find the minimum remaining edge? 

• How quickly can we determine if an edge creates a cycle?

(v, w)
(v, w)

S = {x ∈ V | T contains a path from v to x}
w ∈ S

(S, V − S)



Kruskal’s Implementation
What steps do we need to implement? 

• Sort edges by weight (add to heap):  

• If we do the rest efficiently, this is the dominant cost 

• Determine whether  contains a cycle 

• Ideas? 

• Add an edge to 

O(m log m)

T ∪ {e}

T



Does this edge create a 
cycle?

• An edge creates a cycle if it 
connects a subtree to another 
vertex in the same subtree 

• What if we could label the 
vertices in a tree?  Then we 
could determine if an edge 
creates a cycle by comparing 
vertex labels
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Does this edge create a 
cycle?

• An edge creates a cycle if it 
connects a subtree to another 
vertex in the same subtree 

• What if we could label the 
vertices in a tree?  Then we 
could determine if an edge 
creates a cycle by comparing 
vertex labels 

• How can we update vertex 
labels when adding an edge?



Ideally, what would we do?

• Start with each node as its own set 

• Given a node, determine which set it’s in (i.e., a 
label) 

• Take two sets and combine them into a single set 
with a single label



Union-Find Data Structure
Manages a dynamic partition of a set  

• Provides the following methods: 

• MakeUnionFind(): Initializes each vertex/set with unique label 

• Find(x): Return label of set containing  

• Union(X, Y): Replace sets X, Y with  with single label 

Kruskal’s Algorithm can then use 

• Find for cycle checking  

• Union to update after adding an edge to 

S

x

X ∪ Y

T



Union-Find: Any Ideas?

How can we get: 

•  Find 

•  Union 

(Hint: we’ll be maintaining labels)

O(1)

O(n)



Union-Find: First Attempt
Let  be the sets.  

Idea: Each item (vertex) stores the label of its set 

• MakeUnionFind(): Set  for each   :  

• Find(x): Return     :  

• Union(X,Y):  

• For each , update   to label of set   

•  in the worst case (happens when we union two large sets)

S = {1, 2, …, n}

L[x] = x x ∈ S

L[x]

x ∈ X L[x] Y

O(n)

O(n)

O(1)



Union-Find: Improving Union
• Let’s tweak that idea just a little bit and analyze it  

• Think of a data structure with pointers instead of an array  

• Each vertex points to a “head” node instead of a label; 
head points to itself
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Union-Find: Improving Union
• Let’s tweak that idea just a little bit and analyze it  

• Think of a data structure with pointers instead of an array  

• Each vertex points to a “head” node instead of a label; 
head points to itself 

• (Also store size of each set in the head)

(1) (1)
(5)

(2)



Union-Find: Improving Union
Now, to do a union, what must we do? 

• Make every element in the smaller set point at the head 
of the larger set (why?) 

• Update the size of the newly unioned set

(1) (1)
(5)

(2)



Union-Find: Improving Union
Suppose Kruskal’s identifies an edge between the blue set 
and the green set that we want to add. What do we do? 

• Update the green tree! 

• Follow back pointers from the head of the tree so we 
get every node

(1) (1)
(5)

(3)
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Union-Find: Improving Union
Suppose Kruskal’s identifies an edge between the blue set 
and the green set that we want to add. What do we do? 

• Update the green tree! 

• Follow back pointers from the head of the tree so we 
get every node

(1) (1)
(8)



Union Find: Asymptotic 
Analysis

• Find? 

• Union? 

• Worst case is  but that’s not the whole story 

• Every time we change the label (“head” pointer) of a 
node, the size of its set at least doubles (Why?) 

• Each node’s head pointer only changes  times

O(n)

O(log n)

 (how?)O(1)



• Starting with sets of size 1, any  Union operations will 
take  time  

•  amortized time for a Union operation

n
O(n log n)

O(log n)

Definition.  If  operations take total time , then 
the amortized time per operation is .

n O(t ⋅ n)
O(t)

Union Find: Amortized 
Analysis



Can We Make Union faster?
• What if, instead of  

•  Find, and  Union, 

• We want  Find, and  Union? 

• Any ideas?

O(1) O(log n)

O(log n) O(1)



Fast Union with “Trees”
• Let’s keep a head node as before 

• But now, instead of all nodes in a partition pointing directly to the 
head node, let’s have our pointers act like a tree 

• Instead of going root-to-leaf, our tree edges point up (“up tree”)
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• How can we Find?
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• How can we Union? 

• Keep height of each up tree 

• Up tree with smaller height points to up tree of bigger 
height 

• (At home) show that a set of size  is represented by an 
up tree of height at most 

k
O(log k)

Fast Union with “Trees”



How Fast Is This?
• “Up tree” method: 

•  Union,  Find 

• “Point-to-head” method: 

•  amortized Union,  Find

O(1) O(log n)

O(log n) O(1)



Class poll!
Do you think we can do better?  
Which of the following do you 
think is the case? 

A. Either Union or Find take 
 

B. If you multiply Union and 
Find, the product of their 
times must be  

C. Both can be  

D. Something in the middle

Ω(log n)

Ω(log n)

O(1)



Let’s make things work a 
little faster in practice

• Think about the “up trees” 

• When we’re doing a Find, is 
there work we can do to make 
future finds faster?
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Let’s make things work a 
little faster in practice

• When we’re doing a Find, is 
there work we can do to make 
future finds faster? 

• We really want all of these to 
point right to the head 

• So…let’s do that! 

• Wait, I’ve broken the data 
structure! 

• I can’t maintain “height” ?!?



Maintaining “Height”

We can’t maintain the exact height.  What if we pretend we 
can?  Just do the same bookkeeping: 

• Keep a “rank” 

• Always point the head of smaller rank to the head of 
larger rank; keep rank the same 

• If both ranks are the same, point one to the other, and 
increment the rank



What do we get?
Every time I have an expensive Find, I get a lot of great work 
done for the future by shrinking the tree 

• Called “path compression” 

• Now I have an inaccurate “rank” instead of an actual “height” 

First: did this make things worse?   
     Union is still , is Find  ? 

• We did not make things worse, Find is  

• Can we show that we made things better?

O(1) O(log n)

O(log n)



Surprising Result: Hopcroft Ulman’73
• Amortized complexity of union find with path compression improves 

significantly! 

• Time complexity for  union and find operations on  elements is 
 

•  is the number of times you need to apply the log function 
before you get to a number <= 1 

• Very small! Less than 5 for all reasonable values 

n n
O(n log* n)
log* n



Takeaways
• Kruskal’s algorithm is a greedy algorithm to find the MST of a graph 

• A heap-based priority queue can be used to efficiently yield edges 
in order of increasing weight 

• But cycle detection can be expensive! 

• Union-Find data structure maintains dynamic partitions of vertices 

• How to detect a cycle by edge (u, v)? 

• Update connected components after adding (u, v)? 

• Now we have the tools we need to implement Kruskal’s algorithm!
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