
Greedy Graph Algorithms:
Kruskal’s Algorithm for MSTs

Reminders/Logistics
• Homework feedback process did not go as planned. Debugging meeting this

afternoon. Stay tuned…
• Homework 3 due tonight 10 pm

• See notes in email
• Homework 4 on greedy algorithms will be released tonight

• “Lighter” than previous problem set so you can maximize reading period
• Mask policy:

• Everyone is invited to wear a mask in class, but you are not required to
do so. Please respect others.

• Tomorrow I will get clarification about the CS lab space policies
• Announcements?

Today’s Plan
Kruskal’s Algorithm & the Union-Find Data structure
• Review proofs from activity (or similar variants)
• (Briefly) Review Kruskal’s algorithm to motivate
• (Briefly) Review Heaps
• Iterate on data structure designs to arrive at

efficient Union-Find

Activity Review: MWSS are Trees
Prove. In a weighted, undirected graph that has strictly
positive edge weights, a minimum weight spanning subgraph must
always be a tree.

Proof. (By contradiction)

Suppose has some MWSS, , that is not a tree.

This means that the set connects all vertices in , and that
contains at least one cycle. Without loss of generality, let the vertices

 define some cycle in .

Suppose we remove edge from .

The resulting graph is still connected, (Why?) so it is
still a spanning subgraph.

However, the weight of is less than the weight of , since all edge
weights are positive, including . This is a contradiction, since is a
minimum weight spanning subgraph.

G = (V, E)

G S = (V, E′)
E′ V S

v1, …, vn, v1 S
e = (v1, vn) S

S′ = (V, E′ − e)

S′ S
e S

Activity Review: Cut Property
Recall. A cut is a partition of the vertices into two nonempty
subsets and . A cut edge of a cut is an edge with one
end point in and another in .

Lemma (Cut Property). For any cut , let be the
minimum weight edge connecting any vertex in to a vertex in

, then every minimum spanning tree must include .

Proof. (By contradiction)

Suppose is a spanning tree that does not contain .

Main Idea: We will construct another spanning tree
 with weight less than

Question: How to find such an edge

S V − S S
S V − S

S ⊂ V e = (u, v)
S

V − S e

T e = (u, v)

T′ = T ∪ e − e′ T (⇒⇐)
e′ ?

Activity Review: Cut Property
Proof (Cut Property). (By contradiction.)

Suppose is a spanning tree that does not contain .

• Adding to results in a unique cycle

• Cycle must “enter” and “leave” cut , that is,
s.t.

• (Why?)

• is
a spanning tree (Why?)

•

T e = (u, v)

e T C

C S ∃e′ = (u′ , v′) ∈ C
u′ ∈ S, v′ ∈ V − S

w(e′) > w(e)

T′ = T ∪ e − e′

w(T′) < w(T) (⇒⇐) ∎

Kruskal’s Algorithm

CS136 Review: Priority Queue
Priority Queues manage a set of items and the following operations
on :

• Insert. Insert a new element into

• Delete. Delete an element from

• Extract. Retrieve highest priority element in

Priorities are encoded as a ‘key’ value

Typically: higher priority <—> lower key value (MinHeap)

Heap as Priority Queue. Combines tree structure with array access

• Insert and delete: time (‘tree’ traversal & moves)

• Extract min. Delete item with minimum key value:

S
S

S
S

S

O(log n)
O(log n)

Heap Example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3 7 5 11 17 14 30 21 35 24 19 22 - - - -H

Heap property: For every element , at node , the
element at ’s parent satisfies key(key(

v i
w i w) ≤ v)

Element with smallest key

Kruskal’s Algorithm
Idea: Add the cheapest remaining edge that does not create a cycle.
• Initialize ,

• While :

• Remove cheapest edge from

• If adding to does not create a cycle

•

•

T = ∅ H ← E
|T | < n − 1

e H
e T

T ← T ∪ {e}
H ← H − {e}

A

D

4Idea: Add the cheapest remaining edge that
does not create a cycle.
• Initialize ,

• While :

• Remove cheapest edge from

• If adding to does not create a
cycle

•

•

T = ∅ H ← E
|T | < n − 1

e H
e T

T ← T ∪ {e}
H ← H − {e}

A

D

4

E

C

5Idea: Add the cheapest remaining edge that
does not create a cycle.
• Initialize ,

• While :

• Remove cheapest edge from

• If adding to does not create a
cycle

•

•

T = ∅ H ← E
|T | < n − 1

e H
e T

T ← T ∪ {e}
H ← H − {e}

A

D

F
6

4

E

C

5Idea: Add the cheapest remaining edge that
does not create a cycle.
• Initialize ,

• While :

• Remove cheapest edge from

• If adding to does not create a
cycle

•

•

T = ∅ H ← E
|T | < n − 1

e H
e T

T ← T ∪ {e}
H ← H − {e}

A

D

F

B

7

6

4

E

C

5Idea: Add the cheapest remaining edge that
does not create a cycle.
• Initialize ,

• While :

• Remove cheapest edge from

• If adding to does not create a
cycle

•

•

T = ∅ H ← E
|T | < n − 1

e H
e T

T ← T ∪ {e}
H ← H − {e}

A

D

F

B

7

6

4

E

C

5

G

8

Idea: Add the cheapest remaining edge that
does not create a cycle.
• Initialize ,

• While :

• Remove cheapest edge from

• If adding to does not create a
cycle

•

•

T = ∅ H ← E
|T | < n − 1

e H
e T

T ← T ∪ {e}
H ← H − {e}

A

D

F

B

7

6

4

E

10

C

5

G

8

Idea: Add the cheapest remaining edge that
does not create a cycle.
• Initialize ,

• While :

• Remove cheapest edge from

• If adding to does not create a
cycle

•

•

T = ∅ H ← E
|T | < n − 1

e H
e T

T ← T ∪ {e}
H ← H − {e}

Total weight: 40

Kruskal’s Analysis
• Correctness: Does it give us the correct MST?

• Key Question: Why is each edge that we are adding safe?

• Consider the step just before is added

• Let

• This is a valid cut in the graph (Why? Can ?)

• If there was a cheaper cut edge for cut which did
not form a cycle, the algorithm would have already added it;
this must be the min-cost cut edge for this cut

• Runtime.

• How quickly can we find the minimum remaining edge?

• How quickly can we determine if an edge creates a cycle?

(v, w)
(v, w)

S = {x ∈ V | T contains a path from v to x}
w ∈ S

(S, V − S)

Kruskal’s Implementation
What steps do we need to implement?

• Sort edges by weight (add to heap):

• If we do the rest efficiently, this is the dominant cost

• Determine whether contains a cycle

• Ideas?

• Add an edge to

O(m log m)

T ∪ {e}

T

Does this edge create a
cycle?

• An edge creates a cycle if it
connects a subtree to another
vertex in the same subtree

• What if we could label the
vertices in a tree? Then we
could determine if an edge
creates a cycle by comparing
vertex labels

Does this edge create a
cycle?

• An edge creates a cycle if it
connects a subtree to another
vertex in the same subtree

• What if we could label the
vertices in a tree? Then we
could determine if an edge
creates a cycle by comparing
vertex labels

Does this edge create a
cycle?

• An edge creates a cycle if it
connects a subtree to another
vertex in the same subtree

• What if we could label the
vertices in a tree? Then we
could determine if an edge
creates a cycle by comparing
vertex labels

Does this edge create a
cycle?

• An edge creates a cycle if it
connects a subtree to another
vertex in the same subtree

• What if we could label the
vertices in a tree? Then we
could determine if an edge
creates a cycle by comparing
vertex labels

Does this edge create a
cycle?

• An edge creates a cycle if it
connects a subtree to another
vertex in the same subtree

• What if we could label the
vertices in a tree? Then we
could determine if an edge
creates a cycle by comparing
vertex labels

• How can we update vertex
labels when adding an edge?

Does this edge create a
cycle?

• An edge creates a cycle if it
connects a subtree to another
vertex in the same subtree

• What if we could label the
vertices in a tree? Then we
could determine if an edge
creates a cycle by comparing
vertex labels

• How can we update vertex
labels when adding an edge?

Ideally, what would we do?

• Start with each node as its own set

• Given a node, determine which set it’s in (i.e., a
label)

• Take two sets and combine them into a single set
with a single label

Union-Find Data Structure
Manages a dynamic partition of a set

• Provides the following methods:

• MakeUnionFind(): Initializes each vertex/set with unique label

• Find(x): Return label of set containing

• Union(X, Y): Replace sets X, Y with with single label

Kruskal’s Algorithm can then use

• Find for cycle checking

• Union to update after adding an edge to

S

x

X ∪ Y

T

Union-Find: Any Ideas?

How can we get:

• Find

• Union

(Hint: we’ll be maintaining labels)

O(1)

O(n)

Union-Find: First Attempt
Let be the sets.

Idea: Each item (vertex) stores the label of its set

• MakeUnionFind(): Set for each :

• Find(x): Return :

• Union(X,Y):

• For each , update to label of set

• in the worst case (happens when we union two large sets)

S = {1, 2, …, n}

L[x] = x x ∈ S

L[x]

x ∈ X L[x] Y

O(n)

O(n)

O(1)

Union-Find: Improving Union
• Let’s tweak that idea just a little bit and analyze it

• Think of a data structure with pointers instead of an array

• Each vertex points to a “head” node instead of a label;
head points to itself

Union-Find: Improving Union
• Let’s tweak that idea just a little bit and analyze it

• Think of a data structure with pointers instead of an array

• Each vertex points to a “head” node instead of a label;
head points to itself

Union-Find: Improving Union
• Let’s tweak that idea just a little bit and analyze it

• Think of a data structure with pointers instead of an array

• Each vertex points to a “head” node instead of a label;
head points to itself

• (Also store size of each set in the head)

(1) (1)
(5)

(2)

Union-Find: Improving Union
Now, to do a union, what must we do?

• Make every element in the smaller set point at the head
of the larger set (why?)

• Update the size of the newly unioned set

(1) (1)
(5)

(2)

Union-Find: Improving Union
Suppose Kruskal’s identifies an edge between the blue set
and the green set that we want to add. What do we do?

• Update the green tree!

• Follow back pointers from the head of the tree so we
get every node

(1) (1)
(5)

(3)

Union-Find: Improving Union
Suppose Kruskal’s identifies an edge between the blue set
and the green set that we want to add. What do we do?

• Update the green tree!

• Follow back pointers from the head of the tree so we
get every node

(1) (1)
(5)

(3)

Union-Find: Improving Union
Suppose Kruskal’s identifies an edge between the blue set
and the green set that we want to add. What do we do?

• Update the green tree!

• Follow back pointers from the head of the tree so we
get every node

(1) (1)
(5)

(3)

Union-Find: Improving Union
Suppose Kruskal’s identifies an edge between the blue set
and the green set that we want to add. What do we do?

• Update the green tree!

• Follow back pointers from the head of the tree so we
get every node

(1) (1)
(5)

(3)

Union-Find: Improving Union
Suppose Kruskal’s identifies an edge between the blue set
and the green set that we want to add. What do we do?

• Update the green tree!

• Follow back pointers from the head of the tree so we
get every node

(1) (1)
(5)

(3)

Union-Find: Improving Union
Suppose Kruskal’s identifies an edge between the blue set
and the green set that we want to add. What do we do?

• Update the green tree!

• Follow back pointers from the head of the tree so we
get every node

(1) (1)
(8)

Union Find: Asymptotic
Analysis

• Find?

• Union?

• Worst case is but that’s not the whole story

• Every time we change the label (“head” pointer) of a
node, the size of its set at least doubles (Why?)

• Each node’s head pointer only changes times

O(n)

O(log n)

 (how?)O(1)

• Starting with sets of size 1, any Union operations will
take time

• amortized time for a Union operation

n
O(n log n)

O(log n)

Definition. If operations take total time , then
the amortized time per operation is .

n O(t ⋅ n)
O(t)

Union Find: Amortized
Analysis

Can We Make Union faster?
• What if, instead of

• Find, and Union,

• We want Find, and Union?

• Any ideas?

O(1) O(log n)

O(log n) O(1)

Fast Union with “Trees”
• Let’s keep a head node as before

• But now, instead of all nodes in a partition pointing directly to the
head node, let’s have our pointers act like a tree

• Instead of going root-to-leaf, our tree edges point up (“up tree”)

Fast Union with “Trees”
• Each partition has a single head node

• Node pointers act like a tree, but pointing up

• How can we Find?

Fast Union with “Trees”
• Each partition has a single head node

• Node pointers act like a tree, but pointing up

• How can we Union?

Fast Union with “Trees”
• Each partition has a single head node

• Node pointers act like a tree, but pointing up

• How can we Union?

Fast Union with “Trees”
• Each partition has a single head node

• Node pointers act like a tree, but pointing up

• How can we Union?

• How can we Union?

• Keep height of each up tree

• Up tree with smaller height points to up tree of bigger
height

• (At home) show that a set of size is represented by an
up tree of height at most

k
O(log k)

Fast Union with “Trees”

How Fast Is This?
• “Up tree” method:

• Union, Find

• “Point-to-head” method:

• amortized Union, Find

O(1) O(log n)

O(log n) O(1)

Class poll!
Do you think we can do better?
Which of the following do you
think is the case?

A. Either Union or Find take

B. If you multiply Union and
Find, the product of their
times must be

C. Both can be

D. Something in the middle

Ω(log n)

Ω(log n)

O(1)

Let’s make things work a
little faster in practice

• Think about the “up trees”

• When we’re doing a Find, is
there work we can do to make
future finds faster?

Let’s make things work a
little faster in practice

• Think about the “up trees”

• When we’re doing a Find, is
there work we can do to make
future finds faster?

Consider a “find” from
this node

Let’s make things work a
little faster in practice

• When we’re doing a Find, is
there work we can do to make
future finds faster?

• We really want all of these to
point right to the head

• So…let’s do that!

Let’s make things work a
little faster in practice

• When we’re doing a Find, is
there work we can do to make
future finds faster?

• We really want all of these to
point right to the head

• So…let’s do that!

• Wait, I’ve broken the data
structure!

• I can’t maintain “height” ?!?

Maintaining “Height”

We can’t maintain the exact height. What if we pretend we
can? Just do the same bookkeeping:

• Keep a “rank”

• Always point the head of smaller rank to the head of
larger rank; keep rank the same

• If both ranks are the same, point one to the other, and
increment the rank

What do we get?
Every time I have an expensive Find, I get a lot of great work
done for the future by shrinking the tree

• Called “path compression”

• Now I have an inaccurate “rank” instead of an actual “height”

First: did this make things worse?
 Union is still , is Find ?

• We did not make things worse, Find is

• Can we show that we made things better?

O(1) O(log n)

O(log n)

Surprising Result: Hopcroft Ulman’73
• Amortized complexity of union find with path compression improves

significantly!

• Time complexity for union and find operations on elements is

• is the number of times you need to apply the log function
before you get to a number <= 1

• Very small! Less than 5 for all reasonable values

n n
O(n log* n)
log* n

Takeaways
• Kruskal’s algorithm is a greedy algorithm to find the MST of a graph

• A heap-based priority queue can be used to efficiently yield edges
in order of increasing weight

• But cycle detection can be expensive!

• Union-Find data structure maintains dynamic partitions of vertices

• How to detect a cycle by edge (u, v)?

• Update connected components after adding (u, v)?

• Now we have the tools we need to implement Kruskal’s algorithm!

Acknowledgments

• These slides are based on material from Shikha Singh.

• The pictures in these slides are taken from

• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf)

• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE.pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

