Divide and Conquer: Sorting and Recurrences

Divide \& Conquer: The Pattern

- Divide the problem into several independent smaller instances of exactly the same problem
- Delegate each smaller instance to the Recursive Leap of Faith (technically known as induction hypothesis)
- Combine the solutions for the smaller instances

Review: Merge Sort

MergeSort(L):
if L has one element return L

Base case

Divide L into two halves A and B
$A \leftarrow \operatorname{MergeSort}(A)$

$B \leftarrow \operatorname{MergeSort}(B)$
$L \leftarrow \operatorname{Merge}(A, B)$
return L

Merge Step: $\Theta(n)$

- Scan sorted lists from left to right
- Compare element by element; create new merged list

Merge Step: $\Theta(n)$

```
Is \(a[i]<=b[j]\) ?
```

- Yes, $a[i]$ appended to c, advance i
- No, b[j] appended to c, advance j

merged list c

Merge Step: $\Theta(n)$

```
Is \(a[i]<=b[j]\) ?
```

- Yes, $a[i]$ appended to c, advance i
- No, b[j] appended to c, advance j

merged list c

Merge Step: $\Theta(n)$

Is $a[i]<=b[j]$?

- Yes, $a[i]$ appended to c, advance i
- No, b[j] appended to c, advance j

merged list c

Merge Step: $\Theta(n)$

Is $a[i]<=b[j]$?

- Yes, $a[i]$ appended to c, advance i
- No, b[j] appended to c, advance j

merged list c

Merge Step: $\Theta(n)$

Is $a[i]<=b[j]$?

- Yes, $a[i]$ appended to c, advance i
- No, b[j] appended to c, advance j

merged list c

Merge Step: $\Theta(n)$

Is $a[i]<=b[j]$?

- Yes, $a[i]$ appended to c, advance i
- No, b[j] appended to c, advance j

merged list c

Yada yada yada...

Merge Step: $\Theta(n)$

```
Is \(a[i]<=b[j]\) ?
```

- Yes, $a[i]$ appended to c, advance i
- No, b[j] appended to c, advance j

merged list c

Acknowledgments

- Some of the material in these slides are taken from
- Kleinberg Tardos Slides by Kevin Wayne (https:/l www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/ 04GreedyAlgorithmsl.pdf)
- Jeff Erickson's Algorithms Book (http://jeffe.cs.illinois.edu/ teaching/algorithms/book/Algorithms-JeffE.pdf)

