Divide and Conquer:
Sorting and Recurrences



Divide & Conquer: The Pattern

* Divide the problem into several independent smaller instances
of exactly the same problem

* Delegate cach smaller instance to the Recursive Leap of Faith
(technically known as induction hypothesis)

e Combine the solutions for the smaller instances
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Review: Merge Sort

MergeSort(L):

if 1. has one element
return L
Divide L into two halves A and B
B < MergeSort(B)

return L




Merge Step: ®O(n)

e Scan sorted lists from left to right

« Compare element by element; create new merged list
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Merge Step: ®O(n)

Is a[i1] <= b[3] ?
e Yes, a[1] appended to c, advance 1
e No, b[Jj] appended to c, advance j
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Merge Step: ®O(n)

Is a[i1] <= b[3] ?
e Yes, a[1] appended to c, advance 1
e No, b[Jj] appended to c, advance j
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Merge Step: ®O(n)

Is a[i1] <= b[3] ?
e Yes, a[1] appended to c, advance 1
e No, b[Jj] appended to c, advance j
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Merge Step: ®O(n)

Is a[i1] <= b[3] ?
e Yes, a[1] appended to c, advance 1
e No, b[Jj] appended to c, advance j
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Merge Step: ®O(n)

Is a[i1] <= b[3] ?
e Yes, a[1] appended to c, advance 1
e No, b[Jj] appended to c, advance j
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Merge Step: ®O(n)

Is a[i] <= b[j] ?

e Yes, a[1] appended to c, advance 1

e No, b[Jj] appended to c, advance j
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Yada yada yada...



Merge Step: ®O(n)

Is a[i1] <= b[3] ?
e Yes, a[1] appended to c, advance 1
e No, b[Jj] appended to c, advance j

a b
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