Divide and Conquer: Sorting and Recurrences
Divide & Conquer: The Pattern

- **Divide** the problem into several independent smaller instances of exactly the same problem
- **Delegate** each smaller instance to the *Recursive Leap of Faith* (technically known as induction hypothesis)
- **Combine** the solutions for the smaller instances
Review: Merge Sort

MergeSort(L):

if L has one element
 return L

Divide L into two halves A and B

$A \leftarrow \text{MergeSort}(A)$
$B \leftarrow \text{MergeSort}(B)$

$L \leftarrow \text{Merge}(A, B)$

return L
Merge Step: $\Theta(n)$

- Scan sorted lists from left to right
- Compare element by element; create new merged list

```
<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
</tr>
</tbody>
</table>
```

`i` and `j` are indices pointing to the current elements being compared.
Merge Step: $\Theta(n)$

Is $a[i] \leq b[j]$?
- Yes, $a[i]$ appended to c, advance i
- No, $b[j]$ appended to c, advance j

merged list c
Merge Step: $\Theta(n)$

Is $a[i] \leq b[j]$?
- Yes, $a[i]$ appended to c, advance i
- No, $b[j]$ appended to c, advance j

merged list c
Merge Step: $\Theta(n)$

Is $a[i] \leq b[j]$?
- Yes, $a[i]$ appended to c, advance i
- No, $b[j]$ appended to c, advance j

```
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>9</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

```
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

merged list c
Merge Step: $\Theta(n)$

Is $a[i] \leq b[j]$?
- Yes, $a[i]$ appended to c, advance i
- No, $b[j]$ appended to c, advance j

```
<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 4</td>
<td>1 3</td>
</tr>
<tr>
<td>9 11</td>
<td>5 7</td>
</tr>
<tr>
<td>12</td>
<td>13 14</td>
</tr>
</tbody>
</table>
```

merged list c
Merge Step: $\Theta(n)$

Is $a[i] \leq b[j]$?
- Yes, $a[i]$ appended to c, advance i
- No, $b[j]$ appended to c, advance j

merged list c
Merge Step: $\Theta(n)$

Is $a[i] \leq b[j]$?
- Yes, $a[i]$ appended to c, advance i
- No, $b[j]$ appended to c, advance j

![Diagram showing the merge step of two sorted lists](image)
Yada yada yada...
Merge Step: $\Theta(n)$

Is $a[i] \leq b[j]$?
- Yes, $a[i]$ appended to c, advance i
- No, $b[j]$ appended to c, advance j

merged list c
Acknowledgments

• Some of the material in these slides are taken from
 • Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf)