Divide and Conquer:
Sorting and Recurrences



Divide & Conquer: The Pattern

* Divide the problem into several independent smaller instances
of exactly the same problem

* Delegate cach smaller instance to the Recursive Leap of Faith
(technically known as induction hypothesis)

e Combine the solutions for the smaller instances

OH GREAT! ANDMY
BALD SPOT IS GETTING

T GET SUCKED INTOA
FREAKING VORTEX ON
MY DAY OFF,

AND CRASH-LAND ON MY




Review: Merge Sort

MergeSort(L):

if 1. has one element
return L
Divide L into two halves A and B
B < MergeSort(B)

return L




Merge Step: ®O(n)

e Scan sorted lists from left to right

« Compare element by element; create new merged list

a b

2 4 91112 1 3 5 7 1314

! !
1 y




Merge Step: ®O(n)

Is a[i1] <= b[3] ?
e Yes, a[1] appended to c, advance 1
e No, b[Jj] appended to c, advance j

a b
2 4 9 1112 1 35 7 1314
1 !
1 J

y N

merged list ¢



Merge Step: ®O(n)

Is a[i1] <= b[3] ?
e Yes, a[1] appended to c, advance 1
e No, b[Jj] appended to c, advance j

a b
2 4 9 1112 1 35 7 1314
1 !
1 J
1
T
k

merged list ¢



Merge Step: ®O(n)

Is a[i1] <= b[3] ?
e Yes, a[1] appended to c, advance 1
e No, b[Jj] appended to c, advance j

a b
2 4 9 1112 1 35 7 1314
1 !
1 J
1 2
T
k

merged list ¢



Merge Step: ®O(n)

Is a[i1] <= b[3] ?
e Yes, a[1] appended to c, advance 1
e No, b[Jj] appended to c, advance j

a b
2 4 9 1112 1 35 7 1314
1 1
1 J
1 2 3
T
k

merged list ¢



Merge Step: ®O(n)

Is a[i1] <= b[3] ?
e Yes, a[1] appended to c, advance 1
e No, b[Jj] appended to c, advance j

a b
2 4 9 1112 1 35 7 1314
1 1
1 J
1 2 3 4
T
k

merged list ¢



Merge Step: ®O(n)

Is a[i] <= b[j] ?

e Yes, a[1] appended to c, advance 1

e No, b[Jj] appended to c, advance j

a b
2 4 9 1112 1 35 7 1314
1 1
1 J
1 2 3 4 5
T
k

merged list ¢




Yada yada yada...



Merge Step: ®O(n)

Is a[i1] <= b[3] ?
e Yes, a[1] appended to c, advance 1
e No, b[Jj] appended to c, advance j

a b
2 4 9 1112 1 35 7 1314
| !
1 J
1 2 3 4 5 7 9 1112 1314
T
k

merged list ¢



Acknowledgments

e Some of the material in these slides are taken from

* Kleinberg Tardos Slides by Kevin Wayne (https://
WWW.CS.princeton.edu/~wayne/kleinberg-tardos/pdf/

04GreedyAlgorithmsl.pdf)

» Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE. pdf)



https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

