Greedy Graph Algorithms: Kruskal’s Algorithm for MSTs
Reminders/Logistics

• Homework feedback process did not go as planned. Debugging meeting this afternoon. Stay tuned…

• Homework 3 due tonight 10 pm
 • See notes in email

• Homework 4 on greedy algorithms will be released tonight
 • “Lighter” than previous problem set so you can maximize reading period

• Mask policy:
 • Everyone is invited to wear a mask in class, but you are not required to do so. Please respect others.
 • Tomorrow I will get clarification about the CS lab space policies

• Announcements?
Today’s Plan

Kruskal’s Algorithm & the Union-Find Data structure

• Review proofs from activity (or similar variants)
• (Briefly) Review Kruskal’s algorithm to motivate
• (Briefly) Review Heaps
• Iterate on data structure designs to arrive at efficient Union-Find
Activity Review: MWSS are Trees

Prove. In a weighted, undirected graph $G = (V, E)$ that has strictly positive edge weights, a minimum weight spanning subgraph must always be a tree.

Proof. (By contradiction)

Suppose G has some MWSS, $S = (V, E')$, that is not a tree.

This means that the set E' connects all vertices in V, and that S contains at least one cycle. Without loss of generality, let the vertices v_1, \ldots, v_n, v_1 define some cycle in S.

Suppose we remove edge $e = (v_1, v_n)$ from S.

The resulting graph $S' = (V, E' - e)$ is still connected, (Why?) so it is still a spanning subgraph.

However, the weight of S' is less than the weight of S, since all edge weights are positive, including e. This is a contradiction, since S is a minimum weight spanning subgraph.
Recall. A cut is a partition of the vertices into two nonempty subsets S and $V - S$. A cut edge of a cut S is an edge with one end point in S and another in $V - S$.

Lemma (Cut Property). For any cut $S \subset V$, let $e = (u, v)$ be the minimum weight edge connecting any vertex in S to a vertex in $V - S$, then every minimum spanning tree must include e.

Proof. (By contradiction)

Suppose T is a spanning tree that does not contain $e = (u, v)$.

Main Idea: We will construct another spanning tree $T' = T \cup e - e'$ with weight less than T ($\Rightarrow \Leftarrow$)

Question: How to find such an edge e'?
Proof (Cut Property). (By contradiction.)

Suppose T is a spanning tree that does not contain $e = (u, v)$.

- Adding e to T results in a unique cycle C
- Cycle C must “enter” and “leave” cut S, that is, $\exists e' = (u', v') \in C$ s.t. $u' \in S, v' \in V - S$
- $w(e') > w(e)$ (Why?)
- $T' = T \cup e - e'$ is a spanning tree (Why?)
- $w(T') < w(T)$ (⇒⇐) ■
Kruskal’s Algorithm
CS136 Review: Priority Queue

Priority Queues manage a set S of items and the following operations on S:

- **Insert.** Insert a new element into S
- **Delete.** Delete an element from S
- **Extract.** Retrieve highest priority element in S

Priorities are encoded as a ‘key’ value

Typically: higher priority \leftarrow lower key value (MinHeap)

Heap as Priority Queue. Combines tree structure with array access

- Insert and delete: $O(\log n)$ time (‘tree’ traversal & moves)
- **Extract min.** Delete item with minimum key value: $O(\log n)$
Heap property: For every element v, at node i, the element w at i's parent satisfies $\text{key}(w) \leq \text{key}(v)$.
Kruskal’s Algorithm

Idea: Add the cheapest remaining edge that does not create a cycle.

- Initialize $T = \emptyset$, $H \leftarrow E$
- While $|T| < n - 1$:
 - Remove cheapest edge e from H
 - If adding e to T does not create a cycle
 - $T \leftarrow T \cup \{e\}$
 - $H \leftarrow H - \{e\}$
Idea: Add the cheapest remaining edge that does not create a cycle.

- Initialize $T = \emptyset$, $H \leftarrow E$
- While $|T| < n - 1$:
 - Remove cheapest edge e from H
 - If adding e to T does not create a cycle
 - $T \leftarrow T \cup \{e\}$
 - $H \leftarrow H - \{e\}$
Idea: Add the cheapest remaining edge **that does not create a cycle**.

- Initialize $T = \emptyset$, $H \leftarrow E$
- While $|T| < n - 1$:
 - Remove cheapest edge e from H
 - If adding e to T does not create a cycle
 - $T \leftarrow T \cup \{e\}$
 - $H \leftarrow H - \{e\}$
Idea: Add the cheapest remaining edge that does not create a cycle.

- Initialize $T = \emptyset$, $H \leftarrow E$
- While $|T| < n - 1$:
 - Remove cheapest edge e from H
 - If adding e to T does not create a cycle
 - $T \leftarrow T \cup \{e\}$
 - $H \leftarrow H - \{e\}$
Idea: Add the cheapest remaining edge that does not create a cycle.

- Initialize $T = \emptyset$, $H \leftarrow E$
- While $|T| < n - 1$:
 - Remove cheapest edge e from H
 - If adding e to T does not create a cycle
 - $T \leftarrow T \cup \{e\}$
 - $H \leftarrow H - \{e\}$
Idea: Add the cheapest remaining edge that does not create a cycle.

- Initialize $T = \emptyset$, $H \leftarrow E$
- While $|T| < n - 1$:
 - Remove cheapest edge e from H
 - If adding e to T does not create a cycle
 - $T \leftarrow T \cup \{e\}$
 - $H \leftarrow H - \{e\}$
Idea: Add the cheapest remaining edge that does not create a cycle.

- Initialize $T = \emptyset$, $H \leftarrow E$
- While $|T| < n - 1$:
 - Remove cheapest edge e from H
 - If adding e to T does not create a cycle
 - $T \leftarrow T \cup \{e\}$
 - $H \leftarrow H - \{e\}$

Total weight: 40
Kruskal’s Analysis

- **Correctness**: Does it give us the correct MST?
- **Key Question**: Why is each edge \((v, w)\) that we are adding safe?
 - Consider the step just before \((v, w)\) is added
 - Let \(S = \{x \in V \mid T\) contains a path from \(v\) to \(x\}\}
 - This is a valid cut in the graph (Why? Can \(w \in S\)?)
 - If there was a cheaper cut edge for cut \((S, V - S)\) which did not form a cycle, the algorithm would have already added it; this must be the min-cost cut edge for this cut
- **Runtime**.
 - How quickly can we find the minimum remaining edge?
 - How quickly can we determine if an edge creates a cycle?
Kruskal’s Implementation

What steps do we need to implement?

- Sort edges by weight (add to heap): $O(m \log m)$
 - If we do the rest efficiently, this is the dominant cost
- Determine whether $T \cup \{e\}$ contains a cycle
 - Ideas?
- Add an edge to T
Does this edge create a cycle?

- An edge creates a cycle if it connects a subtree to another vertex in the same subtree.
- What if we could label the vertices in a tree? Then we could determine if an edge creates a cycle by comparing vertex labels.
Does this edge create a cycle?

• An edge creates a cycle if it connects a subtree to another vertex in the same subtree

• What if we could label the vertices in a tree? Then we could determine if an edge creates a cycle by comparing vertex labels
Does this edge create a cycle?

- An edge creates a cycle if it connects a subtree to another vertex in the same subtree.

- What if we could label the vertices in a tree? Then we could determine if an edge creates a cycle by comparing vertex labels.
Does this edge create a cycle?

- An edge creates a cycle if it connects a subtree to another vertex in the same subtree.

- What if we could label the vertices in a tree? Then we could determine if an edge creates a cycle by comparing vertex labels.
Does this edge create a cycle?

• An edge creates a cycle if it connects a subtree to another vertex in the same subtree.

• What if we could label the vertices in a tree? Then we could determine if an edge creates a cycle by comparing vertex labels.

• How can we update vertex labels when adding an edge?
Does this edge create a cycle?

• An edge creates a cycle if it connects a subtree to another vertex in the same subtree.

• What if we could label the vertices in a tree? Then we could determine if an edge creates a cycle by comparing vertex labels.

• How can we update vertex labels when adding an edge?
Ideally, what would we do?

- Start with each node as its own set
- Given a node, determine which set it’s in (i.e., a label)
- Take two sets and combine them into a single set with a single label
Union-Find Data Structure

Manages a dynamic partition of a set S

- Provides the following methods:
 - **MakeUnionFind()**: Initializes each vertex/set with unique label
 - **Find(x)**: Return label of set containing x
 - **Union(X, Y)**: Replace sets X, Y with $X \cup Y$ with single label

Kruskal’s Algorithm can then use
- **Find** for cycle checking
- **Union** to update after adding an edge to T
Acknowledgments

- These slides are based on material from Shikha Singh.
- The pictures in these slides are taken from
 - Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf)