
Greedy Graph Algorithms:
Kruskal’s Algorithm for MSTs



Reminders/Logistics
• Homework feedback process did not go as planned. Debugging meeting this 

afternoon. Stay tuned…

• Homework 3 due tonight 10 pm


• See notes in email

• Homework 4 on greedy algorithms will be released tonight


• “Lighter” than previous problem set so you can maximize reading period

• Mask policy:


• Everyone is invited to wear a mask in class, but you are not required to 
do so. Please respect others.


• Tomorrow I will get clarification about the CS lab space policies

• Announcements?



Today’s Plan
Kruskal’s Algorithm & the Union-Find Data structure

• Review proofs from activity (or similar variants)

• (Briefly) Review Kruskal’s algorithm to motivate

• (Briefly) Review Heaps

• Iterate on data structure designs to arrive at 

efficient Union-Find



Activity Review: MWSS are Trees
Prove.  In a weighted, undirected graph  that has strictly 
positive edge weights, a minimum weight spanning subgraph must 
always be a tree.


Proof. (By contradiction) 


Suppose  has some MWSS, , that is not a tree.


This means that the set  connects all vertices in , and that  
contains at least one cycle. Without loss of generality, let the vertices 

 define some cycle in . 


Suppose we remove edge  from . 


The resulting graph  is still connected, (Why?) so it is 
still a spanning subgraph.


However, the weight of  is less than the weight of , since all edge 
weights are positive, including . This is a contradiction, since  is a 
minimum weight spanning subgraph.

G = (V, E)

G S = (V, E′￼)
E′￼ V S

v1, …, vn, v1 S
e = (v1, vn) S

S′￼= (V, E′￼− e)

S′￼ S
e S



Activity Review: Cut Property
Recall.  A cut is a partition of the vertices into two nonempty 
subsets  and .  A cut edge of a cut  is an edge with one 
end point in  and another in . 

Lemma (Cut Property).  For any cut , let  be the 
minimum weight edge connecting any vertex in  to a vertex in 

, then every minimum spanning tree must include .


Proof. (By contradiction) 


Suppose  is a spanning tree that does not contain .  


Main Idea: We will construct another spanning tree 
 with weight less than  


Question: How to find such an edge 

S V − S S
S V − S

S ⊂ V e = (u, v)
S

V − S e

T e = (u, v)

T′￼ = T ∪ e − e′￼ T ( ⇒⇐ )
e′￼?



Activity Review: Cut Property
Proof (Cut Property).  (By contradiction.)


Suppose  is a spanning tree that does not contain . 


• Adding  to  results in a unique cycle  


• Cycle  must “enter” and “leave” cut , that is,  
s.t. 


•   (Why?)


•  is  
a spanning tree (Why?)


•    

T e = (u, v)

e T C

C S ∃e′￼= (u′￼, v′￼) ∈ C
u′￼∈ S, v′￼∈ V − S

w(e′￼) > w(e)

T′￼= T ∪ e − e′￼

w(T′￼) < w(T ) ( ⇒⇐ ) ∎



Kruskal’s Algorithm



CS136 Review: Priority Queue
Priority Queues manage a set  of items and the following operations 
on :


• Insert. Insert a new element into 


• Delete. Delete an element from 

• Extract. Retrieve highest priority element in 

Priorities are encoded as a ‘key’ value


Typically: higher priority <—> lower key value (MinHeap)

Heap as Priority Queue. Combines tree structure with array access


• Insert and delete:  time (‘tree’ traversal & moves)


• Extract min. Delete item with minimum key value: 

S
S

S
S

S

O(log n)
O(log n)



Heap Example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3 7 5 11 17 14 30 21 35 24 19 22 - - - -H

Heap property:  For every element , at node , the 
element  at ’s parent satisfies key( key(

v i
w i w) ≤ v)

Element with smallest key



Kruskal’s Algorithm
Idea: Add the cheapest remaining edge that does not create a cycle.

• Initialize , 


• While :


• Remove cheapest edge  from 


• If adding  to  does not create a cycle 


• 


•

T = ∅ H ← E
|T | < n − 1

e H
e T

T ← T ∪ {e}
H ← H − {e}
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Idea: Add the cheapest remaining edge that 
does not create a cycle.

• Initialize , 


• While :


• Remove cheapest edge  from 


• If adding  to  does not create a 
cycle 


• 


•

T = ∅ H ← E
|T | < n − 1

e H
e T

T ← T ∪ {e}
H ← H − {e}

Total weight:  40 



Kruskal’s Analysis
• Correctness:  Does it give us the correct MST?  


• Key Question: Why is each edge  that we are adding safe?


• Consider the step just before  is added


• Let 


• This is a valid cut in the graph (Why? Can ?)


• If there was a cheaper cut edge for cut  which did 
not form a cycle, the algorithm would have already added it; 
this must be the min-cost cut edge for this cut


• Runtime. 


• How quickly can we find the minimum remaining edge?


• How quickly can we determine if an edge creates a cycle?

(v, w)
(v, w)

S = {x ∈ V | T contains a path from v to x}
w ∈ S

(S, V − S)



Kruskal’s Implementation
What steps do we need to implement?


• Sort edges by weight (add to heap): 


• If we do the rest efficiently, this is the dominant cost


• Determine whether  contains a cycle


• Ideas?


• Add an edge to 

O(m log m)

T ∪ {e}

T
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Ideally, what would we do?

• Start with each node as its own set


• Given a node, determine which set it’s in (i.e., a 
label)


• Take two sets and combine them into a single set 
with a single label



Union-Find Data Structure
Manages a dynamic partition of a set 


• Provides the following methods:


• MakeUnionFind(): Initializes each vertex/set with unique label


• Find(x): Return label of set containing 


• Union(X, Y): Replace sets X, Y with  with single label


Kruskal’s Algorithm can then use


• Find for cycle checking 


• Union to update after adding an edge to 

S

x

X ∪ Y

T
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