
Greedy Graph Algorithms:
Kruskal’s Algorithm for MSTs

Reminders/Logistics
• Homework feedback process did not go as planned. Debugging meeting this

afternoon. Stay tuned…
• Homework 3 due tonight 10 pm

• See notes in email
• Homework 4 on greedy algorithms will be released tonight

• “Lighter” than previous problem set so you can maximize reading period
• Mask policy:

• Everyone is invited to wear a mask in class, but you are not required to
do so. Please respect others.

• Tomorrow I will get clarification about the CS lab space policies
• Announcements?

Today’s Plan
Kruskal’s Algorithm & the Union-Find Data structure
• Review proofs from activity (or similar variants)
• (Briefly) Review Kruskal’s algorithm to motivate
• (Briefly) Review Heaps
• Iterate on data structure designs to arrive at

efficient Union-Find

Activity Review: MWSS are Trees
Prove. In a weighted, undirected graph that has strictly
positive edge weights, a minimum weight spanning subgraph must
always be a tree.

Proof. (By contradiction)

Suppose has some MWSS, , that is not a tree.

This means that the set connects all vertices in , and that
contains at least one cycle. Without loss of generality, let the vertices

 define some cycle in .

Suppose we remove edge from .

The resulting graph is still connected, (Why?) so it is
still a spanning subgraph.

However, the weight of is less than the weight of , since all edge
weights are positive, including . This is a contradiction, since is a
minimum weight spanning subgraph.

G = (V, E)

G S = (V, E′)
E′ V S

v1, …, vn, v1 S
e = (v1, vn) S

S′ = (V, E′ − e)

S′ S
e S

Activity Review: Cut Property
Recall. A cut is a partition of the vertices into two nonempty
subsets and . A cut edge of a cut is an edge with one
end point in and another in .

Lemma (Cut Property). For any cut , let be the
minimum weight edge connecting any vertex in to a vertex in

, then every minimum spanning tree must include .

Proof. (By contradiction)

Suppose is a spanning tree that does not contain .

Main Idea: We will construct another spanning tree
 with weight less than

Question: How to find such an edge

S V − S S
S V − S

S ⊂ V e = (u, v)
S

V − S e

T e = (u, v)

T′ = T ∪ e − e′ T (⇒⇐)
e′ ?

Activity Review: Cut Property
Proof (Cut Property). (By contradiction.)

Suppose is a spanning tree that does not contain .

• Adding to results in a unique cycle

• Cycle must “enter” and “leave” cut , that is,
s.t.

• (Why?)

• is
a spanning tree (Why?)

•

T e = (u, v)

e T C

C S ∃e′ = (u′ , v′) ∈ C
u′ ∈ S, v′ ∈ V − S

w(e′) > w(e)

T′ = T ∪ e − e′

w(T′) < w(T) (⇒⇐) ∎

Kruskal’s Algorithm

CS136 Review: Priority Queue
Priority Queues manage a set of items and the following operations
on :

• Insert. Insert a new element into

• Delete. Delete an element from

• Extract. Retrieve highest priority element in

Priorities are encoded as a ‘key’ value

Typically: higher priority <—> lower key value (MinHeap)

Heap as Priority Queue. Combines tree structure with array access

• Insert and delete: time (‘tree’ traversal & moves)

• Extract min. Delete item with minimum key value:

S
S

S
S

S

O(log n)
O(log n)

Heap Example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3 7 5 11 17 14 30 21 35 24 19 22 - - - -H

Heap property: For every element , at node , the
element at ’s parent satisfies key(key(

v i
w i w) ≤ v)

Element with smallest key

Kruskal’s Algorithm
Idea: Add the cheapest remaining edge that does not create a cycle.
• Initialize ,

• While :

• Remove cheapest edge from

• If adding to does not create a cycle

•

•

T = ∅ H ← E
|T | < n − 1

e H
e T

T ← T ∪ {e}
H ← H − {e}

A

D

4Idea: Add the cheapest remaining edge that
does not create a cycle.
• Initialize ,

• While :

• Remove cheapest edge from

• If adding to does not create a
cycle

•

•

T = ∅ H ← E
|T | < n − 1

e H
e T

T ← T ∪ {e}
H ← H − {e}

A

D

4

E

C

5Idea: Add the cheapest remaining edge that
does not create a cycle.
• Initialize ,

• While :

• Remove cheapest edge from

• If adding to does not create a
cycle

•

•

T = ∅ H ← E
|T | < n − 1

e H
e T

T ← T ∪ {e}
H ← H − {e}

A

D

F
6

4

E

C

5Idea: Add the cheapest remaining edge that
does not create a cycle.
• Initialize ,

• While :

• Remove cheapest edge from

• If adding to does not create a
cycle

•

•

T = ∅ H ← E
|T | < n − 1

e H
e T

T ← T ∪ {e}
H ← H − {e}

A

D

F

B

7

6

4

E

C

5Idea: Add the cheapest remaining edge that
does not create a cycle.
• Initialize ,

• While :

• Remove cheapest edge from

• If adding to does not create a
cycle

•

•

T = ∅ H ← E
|T | < n − 1

e H
e T

T ← T ∪ {e}
H ← H − {e}

A

D

F

B

7

6

4

E

C

5

G

8

Idea: Add the cheapest remaining edge that
does not create a cycle.
• Initialize ,

• While :

• Remove cheapest edge from

• If adding to does not create a
cycle

•

•

T = ∅ H ← E
|T | < n − 1

e H
e T

T ← T ∪ {e}
H ← H − {e}

A

D

F

B

7

6

4

E

10

C

5

G

8

Idea: Add the cheapest remaining edge that
does not create a cycle.
• Initialize ,

• While :

• Remove cheapest edge from

• If adding to does not create a
cycle

•

•

T = ∅ H ← E
|T | < n − 1

e H
e T

T ← T ∪ {e}
H ← H − {e}

Total weight: 40

Kruskal’s Analysis
• Correctness: Does it give us the correct MST?

• Key Question: Why is each edge that we are adding safe?

• Consider the step just before is added

• Let

• This is a valid cut in the graph (Why? Can ?)

• If there was a cheaper cut edge for cut which did
not form a cycle, the algorithm would have already added it;
this must be the min-cost cut edge for this cut

• Runtime.

• How quickly can we find the minimum remaining edge?

• How quickly can we determine if an edge creates a cycle?

(v, w)
(v, w)

S = {x ∈ V | T contains a path from v to x}
w ∈ S

(S, V − S)

Kruskal’s Implementation
What steps do we need to implement?

• Sort edges by weight (add to heap):

• If we do the rest efficiently, this is the dominant cost

• Determine whether contains a cycle

• Ideas?

• Add an edge to

O(m log m)

T ∪ {e}

T

Does this edge create a
cycle?

• An edge creates a cycle if it
connects a subtree to another
vertex in the same subtree

• What if we could label the
vertices in a tree? Then we
could determine if an edge
creates a cycle by comparing
vertex labels

Does this edge create a
cycle?

• An edge creates a cycle if it
connects a subtree to another
vertex in the same subtree

• What if we could label the
vertices in a tree? Then we
could determine if an edge
creates a cycle by comparing
vertex labels

Does this edge create a
cycle?

• An edge creates a cycle if it
connects a subtree to another
vertex in the same subtree

• What if we could label the
vertices in a tree? Then we
could determine if an edge
creates a cycle by comparing
vertex labels

Does this edge create a
cycle?

• An edge creates a cycle if it
connects a subtree to another
vertex in the same subtree

• What if we could label the
vertices in a tree? Then we
could determine if an edge
creates a cycle by comparing
vertex labels

Does this edge create a
cycle?

• An edge creates a cycle if it
connects a subtree to another
vertex in the same subtree

• What if we could label the
vertices in a tree? Then we
could determine if an edge
creates a cycle by comparing
vertex labels

• How can we update vertex
labels when adding an edge?

Does this edge create a
cycle?

• An edge creates a cycle if it
connects a subtree to another
vertex in the same subtree

• What if we could label the
vertices in a tree? Then we
could determine if an edge
creates a cycle by comparing
vertex labels

• How can we update vertex
labels when adding an edge?

Ideally, what would we do?

• Start with each node as its own set

• Given a node, determine which set it’s in (i.e., a
label)

• Take two sets and combine them into a single set
with a single label

Union-Find Data Structure
Manages a dynamic partition of a set

• Provides the following methods:

• MakeUnionFind(): Initializes each vertex/set with unique label

• Find(x): Return label of set containing

• Union(X, Y): Replace sets X, Y with with single label

Kruskal’s Algorithm can then use

• Find for cycle checking

• Union to update after adding an edge to

S

x

X ∪ Y

T

Acknowledgments

• These slides are based on material from Shikha Singh.

• The pictures in these slides are taken from

• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf)

• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE.pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

