#### Greedy Graph Algorithms: Kruskal's Algorithm for MSTs

#### **Reminders/Logistics**

- Homework feedback process did not go as planned. Debugging meeting this afternoon. Stay tuned...
- Homework 3 due tonight 10 pm
  - See notes in email
- Homework 4 on greedy algorithms will be released tonight
  - "Lighter" than previous problem set so you can maximize reading period
- Mask policy:
  - Everyone is invited to wear a mask in class, but you are not required to do so. Please respect others.
  - Tomorrow I will get clarification about the CS lab space policies
- Announcements?

### Today's Plan

Kruskal's Algorithm & the Union-Find Data structure

- Review proofs from activity (or similar variants)
- (Briefly) Review Kruskal's algorithm to motivate
- (Briefly) Review Heaps
- Iterate on data structure designs to arrive at efficient Union-Find

#### Activity Review: MWSS are Trees

**Prove.** In a weighted, undirected graph G = (V, E) that has strictly positive edge weights, a minimum weight spanning subgraph must always be a tree.

**Proof.** (By contradiction)

Suppose G has some MWSS, S = (V, E'), that is not a tree.

This means that the set E' connects all vertices in V, and that S contains at least one cycle. Without loss of generality, let the vertices  $v_1, \ldots, v_n, v_1$  define some cycle in S.

Suppose we remove edge  $e = (v_1, v_n)$  from *S*.

The resulting graph S' = (V, E' - e) is still connected, (**Why?**) so it is still a spanning subgraph.

However, the weight of S' is less than the weight of S, since all edge weights are positive, including e. This is a contradiction, since S is a *minimum* weight spanning subgraph.

### Activity Review: Cut Property

**Recall.** A cut is a partition of the vertices into two nonempty subsets *S* and V - S. A cut edge of a cut *S* is an edge with one end point in *S* and another in V - S.

**Lemma (Cut Property).** For any cut  $S \subset V$ , let e = (u, v) be the *minimum* weight edge connecting any vertex in S to a vertex in V - S, then every minimum spanning tree must include e.

**Proof.** (By contradiction)

Suppose T is a spanning tree that does not contain e = (u, v).

Main Idea: We will construct another spanning tree  $T' = T \cup e - e'$  with weight less than  $T (\Rightarrow \leftarrow)$ 

**Question:** How to find such an edge e'?

### Activity Review: Cut Property

Proof (Cut Property). (By contradiction.)

Suppose T is a spanning tree that does not contain e = (u, v).

- Adding e to T results in a unique cycle C
- Cycle C must "enter" and "leave" cut S, that is,  $\exists e' = (u', v') \in C$  s.t.  $u' \in S, v' \in V S$
- w(e') > w(e) (Why?)
- *T*′ = *T* ∪ *e* − *e*′ is a spanning tree (**Why?**)
- $w(T') < w(T) \ (\Rightarrow \Leftarrow)$

### Kruskal's Algorithm

#### CS136 Review: Priority Queue

Priority Queues manage a set S of items and the following operations on S:

- Insert. Insert a new element into S
- **Delete.** Delete an element from S
- **Extract.** Retrieve highest priority element in S

Priorities are encoded as a 'key' value

Typically: higher priority <—> lower key value (MinHeap)

Heap as Priority Queue. Combines tree structure with array access

- Insert and delete:  $O(\log n)$  time ('tree' traversal & moves)
- Extract min. Delete item with minimum key value:  $O(\log n)$

#### Heap Example

**Heap property:** For every element v, at node i, the element w at i's parent satisfies  $key(w) \le key(v)$ 





#### Kruskal's Algorithm

Idea: Add the cheapest remaining edge that does not create a cycle.

- Initialize  $T = \emptyset$ ,  $H \leftarrow E$
- While |T| < n 1:
  - Remove cheapest edge e from H
  - If adding *e* to *T* does not create a cycle
    - $T \leftarrow T \cup \{e\}$
  - $H \leftarrow H \{e\}$





**Idea:** Add the cheapest remaining edge **that does not create a cycle**.

- Initialize  $T = \emptyset$ ,  $H \leftarrow E$
- While |T| < n 1:
  - Remove cheapest edge e from H
  - If adding *e* to *T* does not create a cycle

• 
$$T \leftarrow T \cup \{e$$

• 
$$H \leftarrow H - \{e\}$$



**Idea:** Add the cheapest remaining edge **that does not create a cycle**.

- Initialize  $T = \emptyset$ ,  $H \leftarrow E$
- While |T| < n 1:
  - Remove cheapest edge e from H
  - If adding *e* to *T* does not create a cycle

• 
$$T \leftarrow T \cup \{e$$

• 
$$H \leftarrow H - \{e\}$$



Α

4



- Initialize  $T = \emptyset$ ,  $H \leftarrow E$
- While |T| < n 1:
  - Remove cheapest edge e from H
  - If adding *e* to *T* does not create a cycle

• 
$$T \leftarrow T \cup \{e$$

• 
$$H \leftarrow H - \{e\}$$





Α

Idea: Add the cheapest remaining edge that does not create a cycle.

- Initialize  $T = \emptyset$ ,  $H \leftarrow E$
- While |T| < n 1:
  - Remove cheapest edge e from H
  - If adding *e* to *T* does not create a cycle

• 
$$T \leftarrow T \cup \{e$$

• 
$$H \leftarrow H - \{e\}$$





A

Idea: Add the cheapest remaining edge that does not create a cycle.

- Initialize  $T = \emptyset$ ,  $H \leftarrow E$
- While |T| < n 1:
  - Remove cheapest edge e from H
  - If adding *e* to *T* does not create a cycle

• 
$$T \leftarrow T \cup \{e$$

• 
$$H \leftarrow H - \{e\}$$





#### Total weight: 40

**Idea:** Add the cheapest remaining edge **that does not create a cycle**.

- Initialize  $T = \emptyset$ ,  $H \leftarrow E$
- While |T| < n 1:
  - Remove cheapest edge e from H
  - If adding *e* to *T* does not create a cycle

• 
$$T \leftarrow T \cup \{e$$

• 
$$H \leftarrow H - \{e\}$$



Α

#### Kruskal's Analysis

- **Correctness**: Does it give us the correct MST?
- Key Question: Why is each edge (v, w) that we are adding safe?
  - Consider the step just before (v, w) is added
    - Let  $S = \{x \in V \mid T \text{ contains a path from } v \text{ to } x\}$
    - This is a valid cut in the graph (**Why**? Can  $w \in S$ ?)
    - If there was a cheaper cut edge for cut (S, V S) which did not form a cycle, the algorithm would have already added it; this must be the min-cost cut edge for this cut
- Runtime.
  - How quickly can we find the minimum remaining edge?
  - How quickly can we determine if an edge creates a cycle?

#### Kruskal's Implementation

What steps do we need to implement?

- Sort edges by weight (add to heap):  $O(m \log m)$ 
  - If we do the rest efficiently, this is the dominant cost
- Determine whether  $T \cup \{e\}$  contains a cycle
  - Ideas?
- Add an edge to T

- An edge creates a cycle if it connects a subtree to another vertex in the same subtree
- What if we could label the vertices in a tree? Then we could determine if an edge creates a cycle by comparing vertex labels

- An edge creates a cycle if it connects a subtree to another vertex in the same subtree
- What if we could label the vertices in a tree? Then we could determine if an edge creates a cycle by comparing vertex labels

- An edge creates a cycle if it connects a subtree to another vertex in the same subtree
- What if we could label the vertices in a tree? Then we could determine if an edge creates a cycle by comparing vertex labels



- An edge creates a cycle if it connects a subtree to another vertex in the same subtree
- What if we could label the vertices in a tree? Then we could determine if an edge creates a cycle by comparing vertex labels

| • |
|---|

- An edge creates a cycle if it connects a subtree to another vertex in the same subtree
- What if we could label the vertices in a tree? Then we could determine if an edge creates a cycle by comparing vertex labels
- How can we update vertex labels when adding an edge?

- An edge creates a cycle if it connects a subtree to another vertex in the same subtree
- What if we could label the vertices in a tree? Then we could determine if an edge creates a cycle by comparing vertex labels
- How can we update vertex labels when adding an edge?

| ۲ |  |
|---|--|

#### Ideally, what would we do?

- Start with each node as its own set
- Given a node, determine which set it's in (i.e., a label)
- Take two sets and combine them into a single set with a single label

#### **Union-Find Data Structure**

Manages a **dynamic partition** of a set S

- Provides the following methods:
  - MakeUnionFind(): Initializes each vertex/set with unique label
  - Find(x): Return label of set containing x
  - Union(X, Y): Replace sets X, Y with  $X \cup Y$  with single label

Kruskal's Algorithm can then use

- Find for cycle checking
- Union to update after adding an edge to T

#### Acknowledgments

- These slides are based on material from Shikha Singh.
- The pictures in these slides are taken from
  - Kleinberg Tardos Slides by Kevin Wayne (<u>https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsl.pdf</u>)
  - Jeff Erickson's Algorithms Book (<u>http://jeffe.cs.illinois.edu/</u> <u>teaching/algorithms/book/Algorithms-JeffE.pdf</u>)