Greedy Algorithms
Set of Algorithm Design Paradigms

- Greedy Algorithms
- Divide and Conquer
- Dynamic Programming
- Network flow
Greedy: Make Locally Optimal Choices

Greedy algorithms build solutions by making locally optimal choices at each step of the algorithm. Our hope is that we eventually reach our goal.

- Intuitive example: How do you navigate the Manhattan street grid on foot?
- Suppose you are trying to get to a location that is South and East of your starting location

Bill’s Navigation Algorithm: Choose a direction (South or East) and walk until you hit a red light or reach your target street. Then walk in the other direction until you hit a red light or reach your target street.

- Each decision uses only local information, but your choices always bring you closer to your goal (always makes progress)
- Surprisingly, greedy algorithms sometimes produce globally optimal solutions!
An Optimal Greedy Example

• What is the algorithm to return change in US currency?
 • It is greedy!
 • To make change for r, start with biggest denomination less than r, subtract and repeat

• The greedy change algorithm is optimal for US coins!
• But it is not optimal in general:
 • Imagine 25c, 20c, 10c, 5c, 1c coins
 • How to make change for 40c?
 • Greedy: 25c, 10c, 5c
 • Optimal: 20c, 20c
An Optimal Greedy Example: Filling Up on Gas

Suppose you are on a road trip on a long straight highway

- **Goal**: minimize the number of times you stop to get gas
- Many possible ways to choose which gas station to stop at
- Greedy: wait until you are just about to run out of gas (i.e., you won’t make it to the *next* gas station), then stop for gas
- This turns out to be an optimal solution!
A Typical Problem Structure

Have a **global objective**. Want to minimize or maximize a quantity

Make **local optimizations**. At every step, an algorithm can make several choices; a greedy algorithm makes this choice *myopically*

- For some problems, a greedy algorithm ends up being optimal
 - Greedy happens to be *one way* to reach an optimal solution
High-Level Problem Solving Steps

• Formalize the problem

• Design the algorithm to solve the problem
 • Usually this is natural/intuitive/easy for greedy

• Prove that the algorithm is correct
 • This means proving that greedy is optimal (i.e., the resulting solution minimizes or maximizes the global problem objective)
 • This is the hard part! (which is why we will focus on it)

• Analyze running time
 • Often straightforward
Problem Example: Class Scheduling

Class scheduling. Suppose you have a single classroom.

You are given the list of start times s_1, \ldots, s_n and finish times f_1, \ldots, f_n of n classes (labeled 1,\ldots, n).

What is the maximum number of non-conflicting classes you can schedule?

Figure 4.1. A maximum conflict-free schedule for a set of classes.
Problem Example: Interval Scheduling

Job scheduling. Here is a general job scheduling problem:

Suppose you have a machine that can run one job at a time.

You are given n job requests with start and finish times: s_1, \ldots, s_n and f_1, \ldots, f_n.

![Diagram showing job schedule with incompatible jobs d and g]

Schedule with jobs b, e, and h is optimal.

How do you determine the maximum number of compatible requests?
What to be Greedy About?

Algorithmic idea: Pick a criterion to be greedy about. Keep choosing compatible jobs based on chosen criterion.

- Lets start with some of the obvious ones: **job start time**
 - **Greedy algorithm 1:** schedule jobs with **earliest start time** first
- Is this the best way?
 - If not, can we come up with a counter example?

counterexample for earliest start time
Many Ways to be Greedy

Algorithmic idea: Pick a criterion to be greedy about. Keep choosing compatible jobs based on chosen criterion.

- **Greedy algorithm 2:** schedule jobs with **shortest interval** first
 - That is, smallest value of $f_i - s_i$
- Is this the best way?
 - If not, can we come up with a counter example?

counterexample for shortest interval
Many Ways to be Greedy

Algorithmic idea: Pick a criterion to be greedy about. Keep choosing compatible jobs based on chosen criterion.

- **Greedy algorithm 3:** schedule jobs that **conflict with the fewest other jobs** first

- Is this the best way?
 - If not, can we come up with a counter example?

counterexample for fewest conflicts
Many Ways to be Greedy. Not all are equal...

Algorithmic idea: Pick a criterion to be greedy about. Keep choosing compatible jobs based on chosen criterion.

- We’ve identified criteria that do not work:
 - Earliest start time first
 - Shortest interval first
 - Fewest conflicts first
- How about: **earliest finish time first?**
 - Surprisingly, this results in an optimal algorithm!
 - But we need to **prove** why it is optimal
 - **General idea:** earliest finish time first frees the shared resource as soon as possible
Earliest-Finish-Time-First Algorithm

\textbf{EARLIEST-FINISH-TIME-FIRST} \((n, s_1, s_2, \ldots, s_n, f_1, f_2, \ldots, f_n)\)

\textbf{SORT} jobs by finish times and renumber so that \(f_1 \leq f_2 \leq \cdots \leq f_n\).

\(S \leftarrow \emptyset.\) \hspace{1cm} \text{set of jobs selected}

\textbf{FOR} \(j = 1\ \text{TO} \ n\)

\textbf{IF} job \(j\) is compatible with \(S\)

\(S \leftarrow S \cup \{j\}.\)

\textbf{RETURN} \(S.\)
Proving Algorithm Correctness

- Output Set S consists of compatible requests
 - This is try by construction!
- We want to prove our solution S is optimal,
 - That is, it schedules the maximum number of jobs
 - Note: there can be more than one optimal solution
- If we let \mathcal{O} be some optimal set of jobs, then
 - **Goal:** show $|S| = |\mathcal{O}|$, i.e., our greedy solution also selects the same number of jobs and is therefore optimal
Exchange Argument

Idea behind proof by exchange argument:

- Transform O into G one step at a time, without hurting solution (that is, each of our transformations must preserve optimality)

- Let $O = o_1, o_2, \ldots, o_m$ be the sequence of jobs scheduled by the optimal algorithm, and let $G = g_1, g_2, \ldots, g_k$ be the sequence of jobs scheduled by greedy, such that $O \neq G$

- Our goal is to modify O to produce a new solution O' that is:

 - No worse than O, and

 - Closer to G in some measurable way

\[O \text{ (optimal)} \rightarrow O' \text{ (optimal)} \rightarrow O'' \text{ (optimal)} \rightarrow \cdots \rightarrow G \text{ (optimal)} \]
Exchange Argument Proof Example

• Let $O = o_1, o_2, \ldots, o_m$ be the sequence of jobs scheduled by the optimal algorithm, and
Let $G = g_1, g_2, \ldots, g_k$ be the sequence of jobs scheduled by greedy, both ordered by increasing finish time

• By induction, we will show that we can exchange each job scheduled by optimal with a non-conflicting job scheduled by greedy to create a new optimal schedule

Base case: $j = 1$. In the beginning, greedy picks the job with the earliest finish time, so $f_{g_1} \leq f_{o_1}$, thus g_1 does not conflict with any of the jobs o_2, \ldots, o_m

• We can therefore exchange o_1 with g_1 to get a new conflict-free optimal schedule $g_1, o_2, o_3, \ldots, o_m$
Exchange Argument Proof Example

Inductive hypothesis: Assume we have an optimal conflict-free schedule that is the same as greedy from job 1 up to job \(j - 1 \)

- In other words, we have: \(O' = g_1, g_2, \ldots, g_{j-1}, o_j, \ldots, o_m \)

- Because both \(G \) and \(O' \) consist on non-conflicting jobs, neither \(g_j \) nor \(o_j \) conflict with \(g_1, g_2, \ldots, g_{j-1} \)

- Recall, greedy picks earliest finish time among non-conflicting jobs

 - Since \(f_{g_j} \leq f_{o_j} \leq s_{o_{j+1}} \) which means \(g_j \) does not conflict with any remaining jobs \(o_{j+1}, \ldots o_m \)

- We can exchange \(o_j \) with the greedy choice \(g_j \) to construct a new optimal schedule \(g_1, g_2, \ldots, g_j, o_{j+1}, \ldots, o_m \)
Are We Done? Almost

• We can keep replacing every job scheduled by the optimal algorithm with a non-conflicting job scheduled by greedy until we have an optimal schedule that contains all the greedy jobs.

Lemma 2. Greedy is optimal, that is, $k = m$.

Proof. (By contradiction) Suppose $m > k$.

• That is, we assume that there is a job o_{k+1} that starts after g_k ends.
• What is the contradiction?
 • Greedy keeps selecting jobs until no more compatible jobs left. Since $f_{g_k} \leq f_{o_k}$, greedy would also select compatible job o_{k+1}.

($\Rightarrow\Leftarrow$) \blacksquare
Review: Exchange Argument Idea

- Assume there is an optimal solution O that is different from the greedy solution G

- Show that we can modify O to produce a new solution O' that is:
 - No worse than O
 - Closer to G in some measurable way

Idea behind proof by exchange argument:

- Transform O into G one step at a time, without hurting solution (that is, each transformation preserves optimality)

O (optimal) \rightarrow O' (optimal) \rightarrow O'' (optimal) \rightarrow \cdots \rightarrow G (optimal)
Caution: Not Uniquely Optimal

We did not prove that greedy was the only optimal solution: there can be more than one optimal solution.
Greedy: Proof Techniques

The textbook (reading) talks about two approaches to proving correctness of greedy algorithms

- **Greedy stays ahead**: Partial greedy solution is, at all times, as good as an "equivalent" portion of any other solution
 - Simple induction, *often has an implicit exchange argument at its heart*

- **Exchange Property**: An optimal solution can be transformed into a greedy solution without sacrificing optimality

Can use any approach that proves correctness
Example: Running Time Analysis

Let’s analyze all the steps of our job-scheduling algorithm:

- Sorting and relabelling jobs by finish times
 - $O(n \log n)$
- For each selected job i, find next job j such that $s_j \geq f_i$
 - We work our way through the list from $i = 1 \ldots n$, considering each job once
 - Identifying compatibility is $O(1)$ per interval (job), so
 - $O(n)$
- Overall $O(n \log n)$ time
Review: Problem Solving Steps

• Formalize the problem

• Design the algorithm to solve the problem
 • Usually this is natural/intuitive/easy for greedy

• Prove that the algorithm is correct
 • This means proving that greedy is optimal (i.e., the resulting solution minimizes or maximizes the global problem objective)
 • This is the hard part! (which is why we spent most of our time on it)

• Analyze running time
 • Often straightforward, since greedy rules are often simple
Acknowledgments

- The pictures in these slides are taken from
 - Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf)
 - Much of the content was based on slides developed by Shikha Singh