Greedy Algorithms

Set of Algorithm Design Paradigms

- Greedy Algorithms
- Divide and Conquer
- Dynamic Programming
- Network flow

Greedy: Make Locally Optimal Choices

Greedy algorithms build solutions by making **locally optimal** choices at each step of the algorithm. Our hope is that we eventually reach a our goal.

- Intuitive example: How do you navigate the Manhattan street grid on foot?
- Suppose you are trying to get to a location that is South and East of your starting location

- Bill's Navigation Algorithm: Choose a direction (South or East) and walk until you hit a red light or reach your target street. Then walk in the other direction until you hit a red light or reach your target street.
 - Each decision uses only local information, but your choices always bring you closer to your goal (always makes progress)
- Surprisingly, greedy algorithms *sometimes* produce globally optimal solutions!

An Optimal Greedy Example

- What is the algorithm to return change in US currency?
 - It is greedy!
 - To make change for \$r, start with biggest denomination less than \$
 r, subtract and repeat
- The greedy change algorithm is optimal for US coins!
- But it is not optimal in general:
 - Imagine 25c, 20c, 10c, 5c, 1c coins
 - How to make change for 40c?
 - Greedy: 25c, 10c, 5c
 - Optimal: 20c, 20c

An Optimal Greedy Example: Filling Up on Gas

Suppose you are on a road trip on a long straight highway

- Goal: minimize the number of times you stop to get gas
- Many possible ways to choose which gas station to stop at
- Greedy: wait until you are just about to run out of gas (i.e., you won't make it to the *next* gas station), then stop for gas
 - This turns out to be an optimal solution!

A Typical Problem Structure

Have a **global objective.** Want to minimize or maximize a quantity

Make **local optimizations.** At every step, an algorithm can make several choices; a greedy algorithm makes this choice *myopically*

- For some problems, a greedy algorithm ends up being optimal
 - Greedy happens to be one way to reach an optimal solution

High-Level Problem Solving Steps

- Formalize the problem
- Design the algorithm to solve the problem
 - Usually this is natural/intuitive/easy for greedy
- Prove that the algorithm is correct
 - This means proving that greedy is optimal (i.e., the resulting solution minimizes or maximizes the global problem objective)
 - This is the hard part! (which is why we will focus on it)
- Analyze running time
 - Often straightforward

Problem Example: Class Scheduling

Class scheduling. Suppose you have a single classroom.

You are given the list of start times s_1, \ldots, s_n and finish times f_1, \ldots, f_n of *n* classes (labeled $1, \ldots, n$).

What is the maximum number of non-conflicting classes you can schedule?

Figure 4.1. A maximum conflict-free schedule for a set of classes.

Problem Example: Interval Scheduling

Job scheduling. Here is a general job scheduling problem:

Suppose you have a machine that can run one job at a time.

How do you determine the maximum number of compatible requests?

What to be Greedy About?

Algorithmic idea: Pick a criterion to be greedy about. Keep choosing compatible jobs based on chosen criterion.

- Lets start with some of the obvious ones: job start time
 - Greedy algorithm 1: schedule jobs with earliest start time first
- Is this the best way?
 - If not, can we come up with a counter example?

counterexample for earliest start time

Many Ways to be Greedy

Algorithmic idea: Pick a criterion to be greedy about. Keep choosing compatible jobs based on chosen criterion.

- Greedy algorithm 2: schedule jobs with shortest interval first
 - That is, smallest value of $f_i s_i$
- Is this the best way?
 - If not, can we come up with a counter example?

Many Ways to be Greedy

Algorithmic idea: Pick a criterion to be greedy about. Keep choosing compatible jobs based on chosen criterion.

- Greedy algorithm 3: schedule jobs that conflict with the fewest other jobs first
- Is this the best way?
 - If not, can we come up with a counter example?

counterexample for fewest conflicts

Many Ways to be Greedy. Not all are equal...

Algorithmic idea: Pick a criterion to be greedy about. Keep choosing compatible jobs based on chosen criterion.

- We've identified criteria that do not work:
 - Earliest start time first
 - Shortest interval first
 - Fewest conflicts first
- How about: earliest finish time first?
 - Surprisingly, this results in an optimal algorithm!
 - But we need to prove why it is optimal
 - General idea: earliest finish time first frees the shared resource as soon as possible

Earliest-Finish-Time-First Algorithm

EARLIEST-FINISH-TIME-FIRST $(n, s_1, s_2, \ldots, s_n, f_1, f_2, \ldots, f_n)$

SORT jobs by finish times and renumber so that $f_1 \leq f_2 \leq \ldots \leq f_n$.

 $S \leftarrow \emptyset$. \leftarrow set of jobs selected

For j = 1 to n

IF job *j* is compatible with *S*

$$S \leftarrow S \cup \{ j \}.$$

RETURN *S*.

Proving Algorithm Correctness

- Output Set S consists of compatible requests
 - This is try by construction!
- We want to prove our solution S is optimal,
 - That is, it schedules the maximum number of jobs
 - Note: there can be more than one optimal solution
- If we let \mathcal{O} be be some optimal set of jobs, then
 - **Goal:** show |S| = |O|, i.e., our greedy solution also selects the same number of jobs and is therefore optimal

Exchange Argument

Idea behind proof by exchange argument:

- Transform *O* into *G* one step at a time, without hurting solution (that is, each of our transformations must *preserve optimality*)
- Let $O = o_1, o_2, ..., o_m$ be the sequence of jobs scheduled by the optimal algorithm, and let $G = g_1, g_2, ..., g_k$ be the sequence of jobs scheduled by greedy, such that $O \neq G$
- Our goal is to modify O to produce a new solution O' that is:
 - No worse than *O*, and
 - Closer to G in some measurable way

 $O \text{ (optimal)} \rightarrow O' \text{ (optimal)} \rightarrow O'' \text{ (optimal)} \rightarrow \cdots \rightarrow G \text{ (optimal)}$

Exchange Argument Proof Example

- Let O = o₁, o₂, ..., o_m be the sequence of jobs scheduled by the optimal algorithm, and
 Let G = g₁, g₂, ..., g_k be the sequence of jobs scheduled by greedy, both ordered by increasing finish time
- By induction, we will show that we can exchange each job scheduled by optimal with a non-conflicting job scheduled by greedy to create a new optimal schedule

Base case: j = 1. In the beginning, greedy picks the job with the earliest finish time, so $f_{g_1} \leq f_{o_1}$, thus g_1 does not conflict with any of the jobs o_2, \ldots, o_m

• We can therefore exchange o_1 with g_1 to get a new conflict-free optimal schedule $g_1, o_2, o_3, \dots, o_m$

Exchange Argument Proof Example

Inductive hypothesis: Assume we have an optimal conflict-free schedule that is the same as greedy from job 1 up to job j - 1

- In other words, we have: $O' = g_1, g_2, ..., g_{j-1}, o_j, ..., o_m$
- Because both G and O' consist on non-conflicting jobs, neither g_j nor o_j conflict with $g_1, g_2, ..., g_{j-1}$
- Recall, greedy picks earliest finish time among non-conflicting jobs
 - Since $f_{g_j} \leq f_{o_j} \leq s_{o_{j+1}}$ which means g_j does not conflict with any remaining jobs $o_{j+1}, \ldots o_m$
- We can exchange o_j with the greedy choice g_j to construct a new optimal schedule $g_1, g_2, ..., g_j, o_{j+1}, ..., o_m$

Are We Done? Almost

 We can keep replacing every job scheduled by the optimal algorithm with a non-conflicting job scheduled by greedy until we have an optimal schedule that contains all the greedy jobs

Lemma 2. Greedy is optimal, that is, k = m.

Proof. (By contradiction) Suppose m > k.

- That is, we assume that there is a job o_{k+1} that starts after g_k ends
- What is the contradiction?
 - Greedy keeps selecting jobs until no more compatible jobs left. Since $f_{g_k} \leq f_{o_k}$, greedy would also select compatible job o_{k+1}

Review: Exchange Argument Idea

- Assume there is an optimal solution ${\cal O}$ that is different from the greedy solution ${\cal G}$
- Show that we can modify O to produce a new solution O' that is:
 - No worse than O
 - Closer to G in some measurable way

Idea behind proof by exchange argument:

• Transform *O* into *G* one step at a time, without hurting solution (that is, each transformation preserves optimality)

 $O \text{ (optimal)} \rightarrow O' \text{ (optimal)} \rightarrow O'' \text{ (optimal)} \rightarrow \cdots \rightarrow G \text{ (optimal)}$

Caution: Not Uniquely Optimal

We did not prove that greedy was the only optimal solution: there can be more than one optimal solution

Greedy: Proof Techniques

The textbook (reading) talks about two approaches to proving correctness of greedy algorithms

- Greedy stays ahead: Partial greedy solution is, at all times, as good as an "equivalent" portion of any other solution
 - Simple induction, often has an implicit exchange argument at its heart
- Exchange Property: An optimal solution can be transformed into a greedy solution without sacrificing optimality

Can use any approach that proves correctness

Example: Running Time Analysis

Let's analyze all the steps of our job-scheduling algorithm:

- Sorting and relabelling jobs by finish times
 - $O(n \log n)$
- For each selected job i, find next job j such that $s_j \ge f_i$
 - We work our way through the list from i = 1...n, considering each job once
 - Identifying compatibility is O(1) per interval (job), so
 - *O*(*n*)
- Overall $O(n \log n)$ time

Review: Problem Solving Steps

- Formalize the problem
- Design the algorithm to solve the problem
 - Usually this is natural/intuitive/easy for greedy
- Prove that the algorithm is correct
 - This means proving that greedy is optimal (i.e., the resulting solution minimizes or maximizes the global problem objective)
 - This is the hard part! (which is why we spent most of our time on it)
- Analyze running time
 - Often straightforward, since greedy rules are often simple

Acknowledgments

- The pictures in these slides are taken from
 - Kleinberg Tardos Slides by Kevin Wayne (<u>https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf</u>)
 - Jeff Erickson's Algorithms Book (<u>http://jeffe.cs.illinois.edu/</u> <u>teaching/algorithms/book/Algorithms-JeffE.pdf</u>)
- Much of the content was based on slides developed by Shikha Singh