
Greedy Algorithms

Set of Algorithm Design Paradigms

• Greedy Algorithms

• Divide and Conquer

• Dynamic Programming

• Network flow

Greedy: Make Locally Optimal Choices
Greedy algorithms build solutions by making locally optimal choices at each
step of the algorithm. Our hope is that we eventually reach a our goal.

• Intuitive example: How do you navigate the Manhattan street grid on foot?

• Suppose you are trying to get to a location that is South and East of your
starting location 
 
 
 
 
 

• Bill’s Navigation Algorithm: Choose a direction (South or East) and walk
until you hit a red light or reach your target street. Then walk in the other
direction until you hit a red light or reach your target street.

• Each decision uses only local information, but your choices always
bring you closer to your goal (always makes progress)

• Surprisingly, greedy algorithms sometimes produce globally optimal solutions!

An Optimal Greedy Example
• What is the algorithm to return change in US currency?

• It is greedy!

• To make change for $, start with biggest denomination less than $
, subtract and repeat 

• The greedy change algorithm is optimal for US coins!

• But it is not optimal in general:

• Imagine 25c, 20c, 10c, 5c, 1c coins

• How to make change for 40c?

• Greedy: 25c, 10c, 5c

• Optimal: 20c, 20c

r
r

An Optimal Greedy Example: Filling Up on Gas

SFO NYC

Suppose you are on a road trip on a long straight highway

• Goal: minimize the number of times you stop to get gas

• Many possible ways to choose which gas station to stop at

• Greedy: wait until you are just about to run out of gas (i.e., you won’t
make it to the *next* gas station), then stop for gas

• This turns out to be an optimal solution!

A Typical Problem Structure

SFO NYC

Have a global objective. Want to minimize or maximize a quantity

Make local optimizations. At every step, an algorithm can make
several choices; a greedy algorithm makes this choice myopically

• For some problems, a greedy algorithm ends up being optimal

• Greedy happens to be one way to reach an optimal solution

High-Level Problem Solving Steps
• Formalize the problem

• Design the algorithm to solve the problem

• Usually this is natural/intuitive/easy for greedy

• Prove that the algorithm is correct

• This means proving that greedy is optimal (i.e., the resulting
solution minimizes or maximizes the global problem objective)

• This is the hard part! (which is why we will focus on it)

• Analyze running time

• Often straightforward

Problem Example: Class Scheduling
Class scheduling. Suppose you have a single classroom. 

You are given the list of start times and finish times
 of classes (labeled).  

What is the maximum number of non-conflicting classes you can
schedule?

s1, …, sn
f1, …, fn n 1,…, n

From Erickson’s Algorithms Book

Problem Example: Interval Scheduling
Job scheduling. Here is a general job scheduling problem:

Suppose you have a machine that can run one job at a time.

You are given job requests with start and finish times: and
.

n s1, …, sn
f1, …, fn

time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

h

e

b

jobs d and g
are incompatible:

g starts before d ends

Schedule with jobs
b, e, and h
Is optimal

How do you determine the maximum number of compatible requests?

What to be Greedy About?
Algorithmic idea: Pick a criterion to be greedy about. Keep
choosing compatible jobs based on chosen criterion.

• Lets start with some of the obvious ones: job start time

• Greedy algorithm 1: schedule jobs with earliest start time first

• Is this the best way?

• If not, can we come up with a counter example?

counterexample for earliest start time

Many Ways to be Greedy
Algorithmic idea: Pick a criterion to be greedy about. Keep
choosing compatible jobs based on chosen criterion.

• Greedy algorithm 2: schedule jobs with shortest interval first

• That is, smallest value of

• Is this the best way?

• If not, can we come up with a counter example?

fi − si

counterexample for shortest interval

Many Ways to be Greedy
Algorithmic idea: Pick a criterion to be greedy about. Keep
choosing compatible jobs based on chosen criterion.

• Greedy algorithm 3: schedule jobs that conflict with the fewest
other jobs first

• Is this the best way?

• If not, can we come up with a counter example?

counterexample for fewest conflicts

Many Ways to be Greedy. Not all are equal…

Algorithmic idea: Pick a criterion to be greedy about. Keep
choosing compatible jobs based on chosen criterion.

• We’ve identified criteria that do not work:

• Earliest start time first

• Shortest interval first

• Fewest conflicts first

• How about: earliest finish time first?

• Surprisingly, this results in an optimal algorithm!

• But we need to prove why it is optimal

• General idea: earliest finish time first frees the shared
resource as soon as possible

Earliest-Finish-Time-First Algorithm

Proving Algorithm Correctness
• Output Set consists of compatible requests

• This is try by construction!

• We want to prove our solution is optimal,

• That is, it schedules the maximum number of jobs

• Note: there can be more than one optimal solution

• If we let be be some optimal set of jobs, then

• Goal: show , i.e., our greedy solution also
selects the same number of jobs and is therefore optimal

S

S

𝒪

|S | = |𝒪 |

Exchange Argument
Idea behind proof by exchange argument:

• Transform into one step at a time, without hurting solution
(that is, each of our transformations must preserve optimality)

• Let be the sequence of jobs scheduled by the
optimal algorithm, and let be the sequence of
jobs scheduled by greedy, such that

• Our goal is to modify to produce a new solution that is:

• No worse than , and

• Closer to in some measurable way

O G

O = o1, o2, …, om
G = g1, g2, …, gk

O ≠ G

O O′￼

O

G

 (optimal)G (optimal)O (optimal)→ O′￼ (optimal)→ O′￼′￼ → ⋯ →

Exchange Argument Proof Example
• Let be the sequence of jobs scheduled by the

optimal algorithm, and 
Let be the sequence of jobs scheduled by
greedy, both ordered by increasing finish time

• By induction, we will show that we can exchange each job
scheduled by optimal with a non-conflicting job scheduled by
greedy to create a new optimal schedule

Base case: . In the beginning, greedy picks the job with the
earliest finish time, so , thus does not conflict with any of
the jobs

• We can therefore exchange with to get a new conflict-free
optimal schedule

O = o1, o2, …, om

G = g1, g2, …, gk

j = 1
fg1

≤ fo1
g1

o2, …, om

o1 g1
g1, o2, o3, …, om

Exchange Argument Proof Example
Inductive hypothesis: Assume we have an optimal conflict-free
schedule that is the same as greedy from job up to job

• In other words, we have:

• Because both and consist on non-conflicting jobs, neither
nor conflict with

• Recall, greedy picks earliest finish time among non-conflicting jobs

• Since which means does not conflict with
any remaining jobs

• We can exchange with the greedy choice to construct a new
optimal schedule

1 j − 1
O′￼= g1, g2, …, gj−1, oj, …, om

G O′￼ gj
oj g1, g2, …, gj−1

fgj
≤ foj

≤ soj+1
gj

oj+1, …om

oj gj
g1, g2, …, gj, oj+1, …, om

Are We Done? Almost
• We can keep replacing every job scheduled by the optimal

algorithm with a non-conflicting job scheduled by greedy until we
have an optimal schedule that contains all the greedy jobs

Lemma 2. Greedy is optimal, that is, .

Proof. (By contradiction) Suppose .

• That is, we assume that there is a job that starts after ends

• What is the contradiction?

• Greedy keeps selecting jobs until no more compatible jobs left.
Since , greedy would also select compatible job

k = m
m > k

ok+1 gk

fgk
≤ fok

ok+1

(⇒⇐) ∎

Review: Exchange Argument Idea
• Assume there is an optimal solution that is different from the

greedy solution

• Show that we can modify to produce a new solution that is:

• No worse than

• Closer to in some measurable way

Idea behind proof by exchange argument:

• Transform into one step at a time, without hurting solution
(that is, each transformation preserves optimality)

 (optimal) (optimal) (optimal) (optimal)

O
G

O O′￼

O

G

O G

O → O′￼ → O′￼′￼ → ⋯ → G

Caution: Not Uniquely Optimal

We did not prove that greedy was the only optimal
solution: there can be more than one optimal solution

Greedy: Proof Techniques
The textbook (reading) talks about two approaches to proving
correctness of greedy algorithms 

• Greedy stays ahead: Partial greedy solution is, at all times,
as good as an "equivalent" portion of any other solution

• Simple induction, often has an implicit exchange
argument at its heart

• Exchange Property: An optimal solution can be transformed
into a greedy solution without sacrificing optimality

Can use any approach that proves correctness

Example: Running Time Analysis
Let’s analyze all the steps of our job-scheduling algorithm:

• Sorting and relabelling jobs by finish times

•

• For each selected job , find next job such that

• We work our way through the list from ,
considering each job once

• Identifying compatibility is per interval (job), so

•

• Overall time

O(n log n)

i j sj ≥ fi

i = 1…n

O(1)

O(n)

O(n log n)

Review: Problem Solving Steps
• Formalize the problem

• Design the algorithm to solve the problem

• Usually this is natural/intuitive/easy for greedy

• Prove that the algorithm is correct

• This means proving that greedy is optimal (i.e., the resulting
solution minimizes or maximizes the global problem objective)

• This is the hard part! (which is why we spent most of our time on it)

• Analyze running time

• Often straightforward, since greedy rules are often simple

Acknowledgments

• The pictures in these slides are taken from

• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf)

• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE.pdf)

• Much of the content was based on slides developed by Shikha
Singh

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

