
Directed Graphs



Announcements
• Homework 2 is due Wednesday at 10pm 

• TAs have solutions to in-class activities 

• We’ll go over some of them today as well 

• Help hours today: course homepage calendar 

• Student announcements?

http://cs.williams.edu/~jannen/teaching/f22/cs256/index.html#cal


Quick Review: Trees
Recall (K&T 3.2, page 78): Let  be an undirected graph on  
nodes. Any two of the following statements implies the third: 

1.  is connected. 

2.  does not contain a cycle (equivalently,  is acyclic).  

3.  has  edges.

G = (V, E) n

G
G G
G n − 1

Note, this is a stronger version of the claim (K&T 3.1)  that 
every -node tree has exactly  edges.n n − 1



Quick Review: Trees
Recall: Let  be an undirected graph on  nodes. Any two 
of the following statements implies the third (3.2 from K&T, page 78): 

1.  is connected. 

2.  does not contain a cycle (equivalently,  is acyclic).  

3.  has  edges.

G = (V, E) n

G

G G

G n − 1

Prove (1), (2) ⟹ (3)

Let  denote the statement, “Any graph  with  vertices that is connected 
and acyclic must have  edges.”  

P(n) G n
n − 1

The proof is by induction on the number of nodes, . n

Base case: .n = 1
 is a single node with no edges;  is connected and acyclic.G G

Inductive hypothesis:
Suppose  holds for all values of  from our base case until some : 
That is, assume that any connected, acyclic graph  that has  vertices has 

 edges.  

P(n) n k ≥ 1
G k

k − 1 continued…



Quick Review: Trees
Recall: Let  be an undirected graph on  nodes. Any two 
of the following statements implies the third (3.2 from K&T, page 78): 

1.  is connected. 

2.  does not contain a cycle (equivalently,  is acyclic).  

3.  has  edges.

G = (V, E) n

G

G G

G n − 1

Prove (1), (2) ⟹ (3)

 cannot have any vertex  where   ____________________ G u deg(u) = 0

Claim 1:  must have some vertex  that is a leaf ( )G v deg(v) = 1

Every vertex in  cannot have degree  because there would be a cycle: 
pick some vertex and walk at random until repeating a node. The walk cannot 
get stuck because ________________________

G ≥ 2

because  is connected. G

every vertex has degree .≥ 2



Quick Review: Trees
Recall: Let  be an undirected graph on  nodes. Any two 
of the following statements implies the third (3.2 from K&T, page 78): 

1.  is connected. 

2.  does not contain a cycle (equivalently,  is acyclic).  

3.  has  edges.

G = (V, E) n

G

G G

G n − 1

Prove (1), (2) ⟹ (3)

Now, remove some vertex , where , along with its incident edge.v deg(v) = 1

Adding vertex  and its incident edge back to  does not introduce a cycle.
 is connected, acyclic, and has   vertices and  edges.

v G′ 

G k + 1 k

We are left with a graph  that is still connected and still acyclic, and  
we can apply our inductive hypothesis to conclude that ________________

G′ 

 has  edges.G′ k − 1



Quick Review: Finding Connected Components

Algorithm. Given a graph : 

• Pick some vertex , and run . Let  be the set 
of vertices returned by the breadth-first search from . 

• Add  to the set of connected components, and repeat the 
process starting with some vertex that has not appeared in any 
connected component so far. 

• When all vertices have been included, all connected 
components have been found.

G = (V, E)
v ∈ V BFS(G, v) S

v
S

Running time?



Quick Review: Directed Graphs
Notation. . 

• Edges have “orientation” 

•  (or sometimes denoted ) leaves node  and enters 
node  

• Vertices have an “in-degree” and an “out-degree” 

Rest of graph terminology extends 
to directed graphs: directed  
paths, cycles, etc.

G = (V, E)

(u, v) u → v u
v



Directed Graphs Examples
Web graph:  

• Nodes: __________ 

• Edges:  _________ 

• Orientation of edges is crucial 

• Search engines use hyperlink structure to rank web pages 

Road network: 

• Vertices: ___________ 

• Edges:  ______________ 

• Raise your hand if you’ve navigated 
(recently) without a GPS app?

Address Holland Tunnel

New York, NY 10013

©2008 Google - Map data ©2008 Sanborn, NAVTEQ™ - Terms of Use

To see all  the details  that  are visible  on the screen,use the
"Print" link next  to the map.

Webpages

Hyperlinks

Intersections
Streets (one-way)



Directed Reachability
Directed reachability. Given a node  find all nodes reachable from .

• Can use both BFS and DFS. They both visit exactly the set of 
nodes reachable from start node  (but perhaps different orders).

s s

s



Strong Connectivity
• Strong connectivity.  Connected components in directed graphs 

are defined based on mutual reachability. Two vertices  in a 
directed graph  are mutually reachable if there is a directed path 
from  to  and from from  to . 

• A graph  is strongly connected if every pair of vertices are 
mutually reachable

u, v
G

u v v u
G

Strongly Connected!



Strongly Connected Components
• Strongly-connected components. For each , the set of 

vertices mutually reachable from , defines the strongly-connected 
component of  containing .

v ∈ V
v

G v



Deciding Strong Connectivity

Problem.  Given a directed graph , determine if 
 is strongly connected.

G
G

Any ideas?



Idea.  Flip the edges of G and do a BFS on the new graph 

• Build  where    

• There is a directed path from  to  in  iff there is a directed 
path from  to  in  

• Call : Every vertex is reachable from  (in ) if 
and only if  is reachable from every vertex (in ). 

Analysis (Performance) 

• : 

• Build : 

• :  

• Overall, linear time algorithm!

Grev = (V, Erev) (u, v) ∈ Erev iff (v, u) ∈ E
v u Grev

u v G
𝖡𝖥𝖲(Grev, v) v Grev

v G

𝖡𝖥𝖲(G, v)
Grev

𝖡𝖥𝖲(Grev, v)

Testing Strong Connectivity

Kosaraju’s Algorithm

 timeO(n + m)
 timeO(n + m)

 timeO(n + m)



Idea.  Flip the edges of G and do a BFS on the new graph 

• Build  where    

• There is a directed path from  to  in  iff there is a directed 
path from  to  in  

• Call : Every vertex is reachable from  (in ) if 
and only if  is reachable from every vertex (in ). 

Analysis (Correctness) 

• Claim. If  is reachable from every node in  and every node in 
 is reachable from  then  must be strongly connected 

• Proof.  For any two nodes , they are mutually reachable 
through , that is,  and  

Grev = (V, Erev) (u, v) ∈ Erev iff (v, u) ∈ E
v u Grev

u v G
𝖡𝖥𝖲(Grev, v) v Grev

v G

v G
G v G

x, y ∈ V
v x ↝ v ↝ y y ↝ v ↝ z ∎

Testing Strong Connectivity



Directed Acyclic Graphs (DAGs)
Definition. A directed graph is acyclic (or a DAG) if it contains no 
(directed) cycles. 

• DAG is typically pronounced, not spelled out 

• Rhymes with “bag”

an example DAG

v2 v3

v6 v5 v4

v7 v1



Topological Ordering
Problem.  Given a DAG  find a linear ordering of the vertices 
such that for any edge ,  appears before  in the ordering. 

(Said differently, if you number all of the vertices in your sequence of  
vertices , then any edge that leaving a vertex  can only enter 
a vertex ) 

Example.  Find an ordering in which courses can be taken that satisfies 
prerequisites.

G = (V, E)
(v, w) ∈ E v w

n
v1, …, vn vi
vj>i

(Mostly) up-to-date 

http://www.cs.williams.edu/~jannen/teaching/cs-prereqs.svg

http://www.cs.williams.edu/~jannen/teaching/cs-prereqs.svg


Topological Ordering: Example

Taken from: https://courses.cs.washington.edu/courses/cse326/03wi/lectures/RaoLect20.pdf

https://courses.cs.washington.edu/courses/cse326/03wi/lectures/RaoLect20.pdf


Topological Ordering: Example

Taken from: https://courses.cs.washington.edu/courses/cse326/03wi/lectures/RaoLect20.pdf

https://courses.cs.washington.edu/courses/cse326/03wi/lectures/RaoLect20.pdf


Topological Ordering and DAGs
Lemma.  If  has a topological ordering, then  is a DAG. 

Proof.  [By contradiction] Suppose  has a cycle .  Let 
  be the topological ordering of 

• Let  be the lowest-indexed node in , and let  be the node just 
before ;  because  starts and ends on ,  is an edge 

• By our choice of , we have . 

• On the other hand, since  is an edge and  is a 
topological order, we must have   

G G
G C

v1, v2, …, vn G

vi C vj
vi C vi (vj, vi)

i i < j
(vj, vi) v1, v2, …, vn

j < i ( ⇒⇐ ) ∎

v1 vi vj vn

the supposed topological order:  v1, …, vn

the directed cycle C



• No directed cyclic graph can have a topological ordering 

• Does every DAG have a topological ordering? 

• Yes, can prove by induction (and construction) 

• How do we compute a topological ordering? 

• What property should the first node in any topological 
ordering satisfy? 

• Cannot have incoming edges, i.e., indegree = 0 

• Can we use this idea repeatedly?

Topological Ordering and DAGs



Finding a Topological Ordering
Claim. Every DAG has a vertex with in-degree zero. 

Proof.  [By contradiction] Suppose every vertex has an incoming 
edge.  Show that the graph must have a cycle. 

• Pick any vertex , there must be an edge .  

• Walk backwards following these incoming edges for each vertex  

• After  steps, we must have visited some vertex  twice 
(why?) 

• Nodes between two successive visits to  form a cycle   

v (u, v)

n + 1 w

w ( ⇒⇐ ) ∎

Idea for building a topological ordering: Repeatedly “remove” vertices that 
have in-degree 0 from the DAG.



Topological Sorting Algorithm
TopologicalSorting(G) ◃ G = (V,E) is a DAG

   Initialize T[1..n]← 0 and i ← 0 
   while V is not empty do
       i←i+1
       Find a vertex v ∈ V with indeg(v) = 0 
       T[i] ← v
       Delete v (and its edges) from G
Analysis:   

• Correctness,  any ideas how to proceed? 

• Running time?



Topological Sorting Algorithm
Analysis (Correctness). Proof by induction on number of vertices :  

• , no edges, the vertex itself forms topological ordering 

• Suppose our algorithm is correct for any graph with less than  
vertices 

• Consider an arbitrary DAG on  vertices 

• Must contain a vertex  with in-degree  (we proved it) 
• Deleting that vertex and all outgoing edges gives us a 

graph  with less than  vertices that is still a DAG 

• Can invoke inductive hypothesis on  !  

• Let  be a topological ordering of , then 
 must be a topological ordering of  

n
n = 1

n

n
v 0

G′ n
G′ 

u1, u2, …, un−1 G′ 

v, u1, u2, …, un−1 G ∎



Topological Sorting Algorithm
Running time:

• (Initialize) In-degree array ID[1..n] of all vertices 

•  time 

• Find a vertex with in-degree zero 

•  time 

• Need to keep doing this till we run out of vertices!  

• Reduce in-degree of vertices adjacent to a vertex 

•  time for each :  time 

• Bottleneck step: finding vertices with in-degree zero

O(n + m)

O(n)

O(n2)

O(outdegree(v)) v O(n + m)

Can we do better?



Linear-Time Algorithm
• Need a faster way to find vertices with in-degree 0 instead of 

searching through entire in-degree array!

• Idea: Maintain a queue (or stack)  of in-degree 0 vertices 

• Update : When  is deleted, decrement ID[u] for each neighbor 
; if ID[u] = 0, add  to :  

•  time 

• Total time for previous step over all vertices:  

•
 time 

• Topological sorting takes  time and space!

S
S v

u u S
O(outdegree(v))

∑
v∈V

O(outdegree(v)) = O(n + m)

O(n + m)



Traversals: Many More Applications
BFS and/or DFS can also be used to solve many other problems  

• Find a (directed) cycle in a (directed) graph (or a cycle 
containing a specified vertex ) 

• Find all cut vertices of a graph (A cut vertex is one whose 
removal increases the number of connected components) 

• Find all bridges of a graph (A bridge is an edge whose removal 
increases the number of connected components 

• Find all biconnected components of a graph (A biconnected 
component is a maximal subgraph having no cut vertices) 

All of this can be done in  space and time!

v

O( |V | + |E | )


