Algorithms: Applications of BFS

Suppose we have a graph $G=(V, E)$. A given graph could have few edges, or lots of edges, or anything in between. Let's think about the range of possible relationships between V and E.

1 The smallest possible value of $|E|$ is \qquad .
$2|E|$ is $O(\quad)$ because \qquad .

3 When G is a tree, $|E|$ is $\Theta(\quad)$ because \qquad .

Now, recall from last class that we showed breadth-first search (BFS) can be implemented to run in $\Theta(|V|+|E|)$ time.

4 In terms of Θ, how fast does BFS run, as a function of $|V|$, when G is a tree?

5 How fast does BFS run, as a function of $|V|$, when G is very dense, i.e. it contains some constant fraction (say, half) of all possible edges?

A first application of BFS

6 Describe an algorithm to find the connected components of a graph G.

Input: a graph $G=(V, E)$
Output: a set of sets of vertices, Set<Set<Vertex>>, where each set contains the vertices in some (maximal) connected component. That is, all the vertices within each set should be connected; no vertex should be connected to vertices in any other set; and every vertex in V should be contained in exactly one of the sets.

For example, given the graph below, the algorithm should return $\{\{D, E, F\},\{C, B, A\},\{G\},\{H\}\}$.

Describe your algorithm (using informal prose or pseudocode) and analyze its asymptotic running time.
© 2022 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

A second application of BFS

Model 1: Directed graphs

- The indegree of vertex C is 1 . The outdegree of vertex C is also 1 . The indegree of vertex 5 is 2 . The outdegree of vertex g is 3 .
- $\{C, B, A\}$ is a strongly connected component. So is $\{5,6,7,8\} .\{D, E, F\}$ is a weakly connected component but not a strongly connected one.
- b, c, d, e, f is a path. $0,1,2,5,6$ is a path. So is $D, E, F .0,1,2,5,8$ is not a path. Neither is F, E, D.
© 2022 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

7 What is the difference between directed graphs and the (undirected) graphs we saw on a previous activity?

8 The previous activity defined graphs as consisting of a set V of vertices and a set E of edges, where each edge is a set of two vertices. How would you modify this definition to allow for directed graphs?

9 For each of the following graph terms/concepts, say whether you think its definition needs to be modified for directed graphs; if so, say what the new definition should be.

1 vertex

2 degree

3 path

4 cycle

10 What (if anything) about our implementation of BFS needs to be modified for BFS to work sensibly on directed graphs?
© 2022 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

Definition 1. A directed graph $G=(V, E)$ is strongly connected if for any two vertices $u, v \in V$ there is a (directed) path from u to v, and also from v to u.

11 Describe a brute force algorithm for determining whether a given directed graph G is strongly connected.

12 Analyze the running time of your algorithm. Express your answer using Θ.

Model 2: Reverse graphs and strong connectivity

Definition 2. Given a directed graph G, its reverse graph $G^{\text {rev }}$ is the graph with the same vertices and edges, except with all the edges reversed.

Theorem 3. A directed graph $G=(V, E)$ is strongly connected if and only if given any $s \in V$,

- all vertices are reachable from s in G, and
- all vertices are reachable from $\sin G^{\text {rev }}$.

13 Based on the above theorem, describe an algorithm to determine whether a given directed graph $G=(V, E)$ is strongly connected, and analyze its running time.
© 2022 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

14 Can you give an informal, intuitive explanation why the theorem is true? (Hint: if all vertices are reachable from s in $G^{\text {rev }}$, what does it tell us about G ?)

