Graphs and Traversals

Reminders/ Check in

- Assignment 01 due tonight at 10 pm
- Assignment 02 will be released later today
- If you haven't done so already, check out Problem Set Advice
- Take advantage of office hours today:
- Mine: 1.30-3 pm, TAs: 3-5pm, 7-10 pm
- Questions?
- Announcements?

Today's Outline

- Formal definitions of graph terms
- Review common approaches for graph representation
- Review breadth-first search
- Review depth-first search
- Search Proofs (runtime, correctness)

Review: Undirected Graphs

An undirected graph $G=(V, E)$

- V is the set of nodes, E is the set of edges
- Graph size parameters: $n=|V|, m=|E|$
- Sometimes we consider weighted graphs, where each edge e has a weight $w(e)$

Representing Graphs (Review)

Option 1a: Adjacency matrix.

- n-by- n matrix where $A[u][v]=1$ if $(u, v) \in E$

	1	2	3	4	5	6	7	8
1	0	1	1	0	0	0	0	0
2	1	0	1	1	1	0	0	0
3	1	1	0	0	1	0	1	1
4	0	1	0	0	1	0	0	0
5	0	1	1	1	0	1	0	0
6	0	0	0	0	1	0	0	0
7	0	0	1	0	0	0	0	1
8	0	0	1	0	0	0	1	0

$$
n=|V|, m=|E|
$$

Representing Graphs (Review)

Option 1a: Adjacency matrix.

- n-by- n matrix where $A[u][v]=1$ if $(u, v) \in E$
- Space $\underline{O\left(n^{2}\right)}$?
- Checking if $(u, v) \in E$ takes $\underline{O(1)}$ time?

	1	2	3	4	5	6	7	8
1	0	1	1	0	0	0	0	0
2	1	0	1	1	1	0	0	0
3	1	1	0	0	1	0	1	1
4	0	1	0	0	1	0	0	0
5	0	1	1	1	0	1	0	0
6	0	0	0	0	1	0	0	0
7	0	0	1	0	0	0	0	1
8	0	0	1	0	0	0	1	0

$n=|V|, m=|E|$

Representing Graphs (Review)

Option 1b: Adjacency list.

- Array of lists, where each list stores the neighbors of a given node

Representing Graphs (Review)

Option 1b: Adjacency list.

- Array of lists, where each list stores the neighbors of a given node
- Space $\underline{O(n+m)}$?
- Checking if $(u, v) \in E$ takes $\underline{O}($ degree $(u))$ time?

Graph Terminology (Review)

- A path in an undirected graph $G=(V, E)$ is a sequence of nodes $u_{1}, u_{2}, \ldots, u_{k}$ such that every pair $\left(u_{i-1}, u_{i}\right) \in E$.
- A path is simple if all nodes are distinct.
- The length of a path is the number of edges on the path
- An undirected graph is connected if for every pair of nodes u and v, there is a path between u and v (every node is reachable from all other nodes)
- A connected component is the set of all vertices/edges reachable from some vertex v
- A connected graph has 1 connected component.
- A cycle is path $u_{1}, u_{2}, \ldots, u_{k}$ where $u_{1}=u_{k}(k \geq 2)$
- A cycle is simple if all internal nodes are distinct

Trees (Review)

An undirected graph is a tree if it is connected and acyclic (i.e, it does not contain a cycle)

Lemma. Let G be an undirected graph with n nodes. Then any two of these conditions imply the third

- G is connected
- G does not contain a cycle
- G has $n-1$ edges

Graph Traversals

A few common questions we ask about a graph $G=(V, E)$:

- Connectivity. How do we verify if a graph is connected?
- Reachability. Given $s, t \in V$, is there a path between them?

Answers can be determined by "traversing the graph"

- Two classic graph traversal algorithms:

Start at some node and

- Breadth-first search (BFS)
- Depth-first search (DFS)

Start at some node and keep going until you hit a dead end

- BFS \& DFS are remarkably similar algorithms that merely differ in the data structure used

Breadth-first Search

Explore outwards in all possible directions from starting point, peeling "one layer after another"

- BFS algorithm: Initialize $L_{0}=\{v\}$
- $L_{1}=$ all neighbors of L_{0}
- $L_{2}=$ all nodes that do not belong to L_{0} or L_{1} that are adjacent to a node in L_{1}
- $L_{i+1}=$ all nodes that do not belong an earlier layer that are adjacent to a node in L_{i}

BFS Implementation

We need data structures to represent:

- Nodes that we have not encountered yet
- Nodes that we have encountered but not yet "explored"
- Nodes that have been "fully explored" (encountered all its neighbors as well)

BFS Implementation

Suppose we are currently exploring node u

- Its neighbors will be marked "encountered", but when will they be explored compared to other encountered but unexplored nodes?
- BFS Idea: Explore all nodes at level i (same distance from initial node) before moving on to level $i+1$
- Rule: first encountered node should be first node to be explored
- Which data structure should we use?
- Queue! First-in-first-out

BFS Implementation: Queue

 BFS (G, s):Set status of all nodes to unmarked Place s into the queue Q
While Q is not empty
Extract v from Q
If v is unmarked
Mark v
For each edge (v, w):
Put w into the queue Q

Observations:

- Nodes that we have not encountered have never been added to Q
- When a node u is marked (after extraction from Q), all u 's neighbors are then enqueued, so the next time we see u we can ignore it -its already been explored!
- We may enqueue some nodes multiple times, but we only explore them once (if a marked node is extracted, it is skipped)

BFS Example

Tracing the Traversal: BFS Tree

- We can remember parent nodes (the node at level i that lead us to a given node at level $i+1$)
- Keeping track of these relationships produces a tree rooted at s

BFS-Tree(G, s):
Put (\varnothing, s) in the queue Q
While Q is not empty
Extract (p, v) from Q
If v is unmarked
Mark v
parent(v) $=p$
For each edge (v, w):
Put (v, w) into the queue Q

BFS Analysis

- Inserting and extracting an edge from a queue: $\underline{O(1)}$ time
- For each marked node v, we run the for loop for its edges: $\underline{O(n)}$ times
- Overall running time? $\underline{O\left(n^{2}\right)}$
- Can we do better?
- Yes! We can improve our analysis to $O(n+m)$
- Node u has degree (u) incident edges (u, v)
- Total time processing edges: $\sum_{u \in V}$ degree $(\mathrm{u})=2 m$

Depth-First Search

Stack Instead of Queue

If we change how we store the visited vertices (the data structure we use), it changes how we traverse the graph

```
BFS (G, s):
    Set status of all nodes to unmarked
    Place s into the queue Q
    While Q is not empty
    Extract v from Q
    For each edge (v, w):
        If w is unmarked
            Mark w
            Put w into the queue Q
```


Stack Instead of Queue

If we change how we store the visited vertices (the data structure we use), it changes how we traverse the graph

DFS (G, s):

Set status of all nodes to unmarked
Place s into the stack S
While S is not empty
Extract v from S
For each edge (v, w):
If w is unmarked
Mark w
Put w into the stack S

Depth-First Search: Recursive

DFS is perhaps the more natural traversal algorithm to write.

- Can be written iteratively or recursively
- Both DFS versions are the same; can actually see the "recursion stack" in the iterative version

```
Recursive-DFS(u):
    Set status of u to marked # encountered u
    for each edge (u, v):
        if v's status is unmarked:
        DFS(v)
    # done exploring neighbors of u
```


Example Graph

DFS Running Time

We can apply the same analysis as we did for BFS.

- Inserts and extracts to a stack: $O(1)$ time
- Setting status of each node to unmarked: $O(n)$
- Each node is set marked at most once; equivalently $\operatorname{DFS}(u)$ is called at most once for each node
- For every node v, explore degree(v) edges

$$
\sum_{v} \operatorname{degree}(v)=2 m
$$

- Overall, running time $O(n+m)$

Depth-First Search Tree

DFS returns a spanning tree, similar to BFS

```
DFS-Tree(G, s):
    Put ( \(\varnothing, 5\) ) in the stack \(S\)
    While \(S\) is not empty
    Extract ( \(p, \mathrm{v}\) ) from \(S\)
        If \(v\) is unmarked
        Mark v
        parent(v) \(=p\)
        For each edge (v, w):
        Put (v, w) into the stack S
```

The spanning tree formed by parent edges in a DFS are usually long and skinny

Proving Correctness

DFS Correctness

- DFS finds precisely the set of nodes reachable from start node s
- That is, $\operatorname{DFS}(s)$ marks node x iff node x is reachable from s
- Proof. (\Rightarrow)
- Since x is marked, $(x, \operatorname{parent}(x)))$ is an edge in the graph
- Claim. $x \rightarrow \operatorname{parent}(x) \rightarrow \operatorname{parent}(\operatorname{parent}(x)) \rightarrow \cdots$ leads to s
- Induction on the order in which vertices are marked
- Suppose claim holds for all vertices before some vertex u
- Consider u : parent (u) must be discovered before u, and thus the claim holds for it, since (u, parent (u)) is an edge, we have a path from u to s

DFS Correctness

- DFS finds precisely the set of nodes reachable from start node s
- That is, $\operatorname{DFS}(s)$ marks node x iff node x is reachable from s
- Proof. (\Leftarrow)
- Suppose node x is reachable from s via path P, but x is not marked by DFS
- Since s is marked by DFS and x is not, there must be a first node v on P that is not marked by DFS
- Thus, there is an edge $(u, v) \in P$ such that u is marked and v is not marked
- But this cannot happen, since when u is marked, all its neighbors are also marked $\Rightarrow \Leftarrow$ ■

BFS Correctness

- Breadth first search finds precisely the set of nodes reachable from s
- That is, $\operatorname{BFS}(s)$ marks node x iff node x is reachable from s
- Proof. (\Rightarrow)
- Since x is marked, $(x, \operatorname{parent}(x)))$ is an edge in the graph
- Claim. $x \rightarrow \operatorname{parent}(x) \rightarrow \operatorname{parent}(\operatorname{parent}(x)) \rightarrow \cdots$ leads to s
- Induction on the order in which vertices are marked
- Let $u_{1}, u_{2}, \ldots, u_{k}, \ldots, u_{n}$ denote the order in which vertices are marked, suppose claim holds all vertices with index less than k
- Consider u_{k} : parent $\left(u_{k}\right)$ must be discovered before u_{k}, and thus the claim holds for it, since $\left(u_{k}\right.$, parent $\left.\left(u_{k}\right)\right)$ is an edge, we have a path from u_{k} to s

BFS Correctness

- Breadth first search finds precisely the set of nodes reachable from s
- That is, $\operatorname{BFS}(s)$ marks node x iff node x is reachable from s
- Proof. (\Leftarrow)
- Suppose node x is reachable from s via path P, but x is not marked by BFS
- Since s is marked by BFS and x is not, there must be a first node $v \neq s$ on P that is not marked by BFS
- Thus, there is an edge $(u, v) \in P$ such that u is marked and v is not marked
- But this cannot happen, since when u is marked, all its neighbors are also marked $\Rightarrow \Leftarrow \square$

