Largest Sum Subinterval \& Asymptotic Analysis

Today’s Plan

- Look at a fun problem (Largest Subinterval Sum)
- Iteratively develop more efficient solutions
- Prove some things to help us get there
- Take a step back and state precisely what we mean by efficiency
- Practice some asymptotic analysis

Largest Subinterval Sum

INPUT: An array A of n integers (1-indexed)
OUTPUT: The largest sum of any subinterval. The empty interval (which we will represent as $N U L L$ has sum 0).

Example I: Consider the array $(10,20,-50,40)$

```
Subinterval [I, I] = 10
Subinterval [I,4]=10+20-50+40=20
Subinterval [2,3]=20-50=-30
```

The largest sum subinterval is 40 , corresponding to $[4,4]$

Largest Subinterval Sum

INPUT: An array A of n integers (1-indexed)
OUTPUT: The largest sum of any subinterval. The empty interval (which we will represent as $N U L L$ has sum 0).

Example 2: Consider the array $(-2,3,-2,4,-1,8,-20)$

The largest sum subinterval is 12 , corresponding to $[2,6]$

Largest Subinterval Sum

INPUT: An array A of n integers (1-indexed)
OUTPUT: The largest sum of any subinterval. The empty interval (which we will represent as $N U L L$ has sum 0).

Question: Is this problem interesting when the array's integers are all positive?

No! Then the answer is always the entire interval...

Developing an Algorithm

Algorithm with $O\left(n^{3}\right)$ Steps

- Let's start with an algorithm that corresponds directly to the problem definition:
- We are looking for the latest sum of any sub-interval
- How many total sub-intervals are there?

$$
\cdot\binom{n}{2} \text { which is } \frac{n(n+1)}{2}=O\left(n^{2}\right)
$$

- How long does it take to sum a sub-interval?
- $O(n)$ (in the worst case, must sum entire array)

LargestSum(A):

```
largest }\leftarrow
for }i\leftarrow1\ldots..
    for }j\leftarrowi\ldots..
        sum}\leftarrow
        for }k\leftarrowi\ldotsj
        sum}\leftarrowsum+A[k
        largest }\leftarrow\operatorname{max}(\mathrm{ sum,largest )
```

return largest

Algorithm with $O\left(n^{2}\right)$ Steps

- The last algorithm repeated a lot of work. How?
- If A had 7 integers, interval [2,7] computed [2,2], [2,3], [2,4], and so on...
- Can we avoid this repeated work?

Idea: Compute and reuse a Partial Sum table

$$
P S(j)=\sum_{i=1}^{j} A(i)
$$

Algorithm with $O\left(n^{2}\right)$ Steps

Claim: We can use PS to compute the sum of any interval (i, j) in $O(1)$ time. How?

-2	3	-2	4	-1	8	-20

$\boldsymbol{\sim} \boldsymbol{\sim} \quad$| 0 | -2 | 1 | -1 | 3 | 2 | 10 | -10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$$
P S(j)=\sum_{i=1}^{j} A(i)
$$

PS[i] contains sum of all integers "up until $A[i]$ ", with a 0 for the empty array.

Algorithm with $O\left(n^{2}\right)$ Steps

Example: How to compute $A(3,6)$?

$P S[2]$ is everything before $A[3]$
$P S[6]$ is everything up to $A[6]$
$P S(j)=\dot{N}^{j}$
Subtract $P S[j]$ - $P S[i-1]$

LargestSum(A):

Can We Do Even Better?

Algorithm with $O(n)$ Steps

Let $P S(j)=\sum_{i=1}^{j} A[i]$ give the partial sum of the first j integer values of A.
Let's visualize an example $P S(j)$

Algorithm with $O(n)$ Steps

Observation 1: If $P S(j) \geq 0$ for all $1 \leq j \leq n$ then the largest sum subinterval is the interval $[1, k]$ where k maximizes $P S(k)$.

Proof. The proof is by contradiction.
Suppose $[1, k]$ did not give the largest sum. Then there is some other interval $[u, v]$ that has a larger sum. But shifting u to 1 cannot decrease the sum (since we would then be subtracting out 0), and shifting v to k cannot decrease the sum (since k maximizes $P S(k)$). Thus $[u, v]$ cannot be an interval with a larger sum.

Algorithm with $O(n)$ Steps

Let $\left.P S(j)=\sum_{i=1}^{j} A[i]\right)$ give the partial sum of the first j integer values of A.
Let's visualize a second example $P S(j)$:

Algorithm with $O(n)$ Steps

Observation 2: When $P S(j)$ falls below 0 for the first time, then the largest sum subinterval never includes j-it falls on one side or the other. That is, when $P S(j)$ falls below 0 for the first time, the problem essentially "resets" with $P S(j)$ being "the new 0 ".

Proof. The proof is by contradiction.
Suppose the largest sum subinterval $[u, v]$ contains the first point j where the partial sum drops below 0 . Notice that $[u, j]$ corresponds to a negative sum. The interval $[j+1, v]$ must be larger than $[u, v]$ since we are subtracting out a negative sum. This is a contradiction.

LargestSum(A):

```
sum, largest }\leftarrow
for }i\leftarrow1\ldots..
sum}\leftarrow\operatorname{max}(sum+A[i],0
largest }\leftarrow\operatorname{max}(\mathrm{ sum, largest)
```

return largest

This $O(n)$ algorithm follows from our previous two observations.

- We only need to worry about sums corresponding to intervals where i is a new " 0 -point" for the partial sum and j maximizes the partial sum
- Going back to our visualization, we are calculating the largest difference between some valley and a subsequent peak

Analysis and Asymptotics

- Why should we examine problems analytically?
- Analysis is independent of the algorithm's implementation, the language the program is written in, and the hardware on which the program is run
- Theoretical efficiency almost always implies a path towards practical efficiency
- When there is a mismatch between a theoretical model's predictions and the observed performance, there is an interesting systems problem to be solved!

My research group relies on this!

Analysis and Asymptotics

- Why use worst-case analysis?
- Worst-case is a real guarantee.
- Worst-case captures efficiency reasonably well in practice. Exceptions are rare (e.g., Quicksort) and interesting.
- Average case is hard to quantify-we often don't know the true distribution of inputs, so what are we analyzing the average of?

Analysis and Asymptotics

- What does efficient actually mean?
- We will say an algorithm is efficient if it runs in time that is polynomial in the size of the input
- Practical efficiency probably maxes out somewhere between $O(n \log n)$ and $O\left(n^{3}\right)$, depending on the context
- Not brute force!

Analysis and Asymptotics

- Why use asymptotic analysis?
- Precise bounds are difficult to calculate
- Precise runtime is dependent on external factors, often including things we don't consider or can't control (hardware, OS environment, compiler, ...)
- We often want to compare algorithms, and equivalency up to constant factors is often the right level of detail to have those conversations
- Once we pick an efficient algorithm, we can optimize the "practical considerations"

Asymptotic Analysis

Big-O

Definition (Asymptotic upper bounds): $f(n)$ is $O(g(n))$ if and only if there exists constants $c>0$ and $n_{0} \geq 0$ such that for all $n \geq n_{0}$, we have $f(n) \leq c \cdot g(n)$

Big-O

Definition (Asymptotic upper bounds): $f(n)$ is $O(g(n))$ if and only if there exists constants $c>0$ and $n_{0} \geq 0$ such that for all $n \geq n_{0}$, we have $f(n) \leq c \cdot g(n)$

Example:

$$
\begin{aligned}
f(n) & =3 n^{2}+17 n+8 \\
& \leq 3 n^{2}+17 n^{2}+8 n^{2} \quad \text { For } n \geq 1 \\
& =28 n^{2}
\end{aligned}
$$

Choosing $c=28$ and $n_{0}=1$ means $f(n)$ is $O\left(n^{2}\right)$

Class Quiz

Let $f(n)=3 n^{2}+17 n \log _{2} n+1000$. Which of the following are true?
A. $f(n)$ is $O\left(n^{2}\right)$.
B. $f(n)$ is $O\left(n^{3}\right)$.
C. Both A and B.
D. Neither A nor B.

Big-Omega

Definition (Asymptotic lower bounds): $f(n)$ is $\Omega(g(n))$ if and only if there exists constants $c>0$ and $n_{0} \geq 0$ such that for all $n \geq n_{0}$, we have $f(n) \geq c \cdot g(n)$

Big-Omega

Definition (Asymptotic lower bounds): $f(n)$ is $\Omega(g(n))$ if and only if there exists constants $c>0$ and $n_{0} \geq 0$ such that for all $n \geq n_{0}$, we have $f(n) \geq c \cdot g(n)$

Example:

$$
\begin{aligned}
f(n) & =3 n^{2}+17 n+8 \\
& \geq 3 n^{2} \quad \text { For } n \geq 0
\end{aligned}
$$

Choosing $c=1$ and $n_{0}=0$ means $f(n)$ is $\Omega\left(n^{2}\right)$

Big-Theta

Definition (Asymptotic tight bounds): $f(n)$ is $\Theta(g(n))$ if and only if $f(n)$ is $O(g(n))$ and $\Omega(g(n))$

Equivalently, if there exist constants $c_{1}>0, c_{2}>0$, and $n_{0} \geq 0$ such that $0 \leq c_{1} \cdot g(n) \leq f(n) \leq c_{2} \cdot g(n)$ for all $n \geq n_{0}$.

Ideally, we'd strive for a "tight" bounds whenever we can!

Big Oh- Notational Abuses

- $O(g(n))$ is actually a set of functions, but the CS community writes $f(n)=O(g(n))$ instead of $f(n) \in O(g(n))$
- For example

$$
\begin{aligned}
& \text { - } f_{1}(n)=O(n \log n)=O\left(n^{2}\right) \\
& \text { - } f_{2}(n)=O\left(3 n^{2}+n\right)=O\left(n^{2}\right) \\
& \text { - } \operatorname{But} f_{1}(n) \neq f_{2}(n)
\end{aligned}
$$

- Okay to abuse notation in this way

Growth of Functions

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10^{25} years, we simply record the algorithm as taking a very long time.

	n	$n \log _{2} n$	n^{2}	n^{3}	1.5^{n}	2^{n}	$n!$
$n=10$	$<1 \mathrm{sec}$	4 sec					
$n=30$	$<1 \mathrm{sec}$	18 min	10^{25} years				
$n=50$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	11 min	36 years	very long
$n=100$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	1 sec	12,892 years	10^{17} years	very long
$n=1,000$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	1 sec	18 min	very long	very long	very long
$n=10,000$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	2 min	12 days	very long	very long	very long
$n=100,000$	$<1 \mathrm{sec}$	2 sec	3 hours	32 years	very long	very long	very long
$n=1,000,000$	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

Playing with Logs: Properties

- In this class, $\log n$ means $\log _{2} n, \ln n=\log _{e} n$
- Constant base doesn't matter: $\log _{b}(n)=\frac{\log n}{\log b}=O(\log n)$
- Properties of logs:
- $\log \left(n^{m}\right)=m \log n$
- $\log (a b)=\log a+\log b$
- $\log (a / b)=\log a-\log b$

$$
a^{\log _{a} n}=n
$$

We will use this a lot!

Exponents

$$
\begin{aligned}
& n^{a} \cdot n^{b}=n^{a+b} \\
& \left(n^{a}\right)^{b}=n^{a b}
\end{aligned}
$$

Comparing Running Times

- When comparing two functions, helpful to simplify first
- Is $n^{1 / \log n}=O(1)$?
- Is $\log \sqrt{4^{n}}=O\left(n^{2}\right)$?
- Is $n=O\left(2^{\log _{4} n}\right)$?

Comparing Running Times

- When comparing two functions, helpful to simplify first
- Is $n^{1 / \log n}=O(1)$?
- Simplify $n^{1 / \log n}=\left(2^{\log n}\right)^{1 / \log n}=2$: True
- Is $\log \sqrt{4^{n}}=O\left(n^{2}\right)$
- Simplify $\log \sqrt{2^{2 n}}=\log 2^{n}=n \log 2=O(n)$: True
- Is $n=O\left(2^{\log _{4} n}\right)$?
- Simplify $2^{\log _{4} n}=2^{\frac{\log _{2} n}{\log _{2} 4}}=2^{\left(\log _{2} n\right) / 2}=2^{\log _{2} \sqrt{n}}=\sqrt{n}$: False

Tools for Comparing Asymptotics

- We ca use limits to show asymptotic bounds
- If $\lim _{n \rightarrow \infty} \frac{f(x)}{g(x)}=0$, then $f(x)=O(g(x))$
- If $\lim _{n \rightarrow \infty} \frac{f(x)}{g(x)}=c$ for some constant $0<c<\infty$, then

$$
f(x)=\Theta(g(x))
$$

Tools for Comparing Asymptotics

- Logs grow slowly than any polynomial:
- $\log _{a} n=O\left(n^{b}\right)$ for every $a>1, b>0$
- Exponentials grow faster than any polynomial:
- $n^{d}=O\left(r^{n}\right)$ for every $d>1, r>0$
- Taking logs
- As $\log x$ is a strictly increasing function for $x>0$, $\log (f(n))<\log (g(n))$ implies $f(n)<g(n)$
- E.g. Compare $3^{\log n}$ vs 2^{n}
- Taking log of both, $\log n \log 3$ vs n
- Beware: when comparing logs, constants matter!

