#### Largest Sum Subinterval & Asymptotic Analysis

#### Today's Plan

- Look at a fun problem (Largest Subinterval Sum)
- Iteratively develop more efficient solutions
  - Prove some things to help us get there
- Take a step back and state precisely what we mean by efficiency
- Practice some asymptotic analysis

#### Largest Subinterval Sum

**INPUT:** An array A of n integers (1-indexed)

**OUTPUT:** The largest sum of any subinterval. The empty interval (which we will represent as NULL has sum 0).

Example 1: Consider the array (10,20, -50,40)

Subinterval [1, 1] = 10Subinterval [1,4] = 10+20-50+40 = 20Subinterval [2,3] = 20-50 = -30

The largest sum subinterval is 40, corresponding to [4,4]

#### Largest Subinterval Sum

**INPUT:** An array A of n integers (1-indexed)

**OUTPUT:** The largest sum of any subinterval. The empty interval (which we will represent as NULL has sum 0).

Example 2: Consider the array (-2,3, -2,4, -1,8, -20)

The largest sum subinterval is 12, corresponding to [2,6]

#### Largest Subinterval Sum

**INPUT:** An array A of n integers (1-indexed)

**OUTPUT:** The largest sum of any subinterval. The empty interval (which we will represent as NULL has sum 0).

Question: Is this problem interesting when the array's integers are all positive?

No! Then the answer is always the entire interval...

#### Developing an Algorithm

- Let's start with an algorithm that corresponds directly to the problem definition:
  - We are looking for the latest sum of any sub-interval
    - How many total sub-intervals are there?

• 
$$\binom{n}{2}$$
 which is  $\frac{n(n+1)}{2} = O(n^2)$ 

- How long does it take to sum a sub-interval?
  - O(n) (in the worst case, must sum entire array)

#### This brute-force algorithm takes $O(n^3)$ steps

#### LargestSum(A):

 $largest \leftarrow 0$ for  $i \leftarrow 1...n$ for  $j \leftarrow i...n$  $sum \leftarrow 0$ for  $k \leftarrow i...j$  $sum \leftarrow sum + A[k]$  $largest \leftarrow max(sum, largest)$ 

return largest

Try walking through LargestSum(A) on a small example, like A = (10, 20, -50, 40)

- The last algorithm repeated a lot of work. How?
  - If A had 7 integers, interval [2,7] computed [2,2], [2,3], [2,4], and so on...
    - Can we avoid this repeated work?

Idea: Compute and reuse a Partial Sum table

$$PS(j) = \sum_{i=1}^{j} A(i)$$

**Claim:** We can use *PS* to compute the sum of any interval (i, j) in O(1) time. How?

| A  |   | -2 | 3 | -2 | 4 | -1 | 8  | -20 |
|----|---|----|---|----|---|----|----|-----|
| PS | 0 | -2 | 1 | -1 | 3 | 2  | 10 | -10 |

PS[i] contains sum of all integers "up until A[i]", with a 0 for the empty array.



Example: How to compute A(3,6)?



#### LargestSum(A):



Each iteration performs O(1) work

#### Can We Do Even Better?

Let  $PS(j) = \sum_{i=1}^{J} A[i]$  give the partial sum of the first *j* integer values of *A*.

Let's visualize an example PS(j)



Observation 1: If  $PS(j) \ge 0$  for all  $1 \le j \le n$  then the largest sum subinterval is the interval [1,k] where k maximizes PS(k).

**Proof.** The proof is by contradiction.

Suppose [1,k] did not give the largest sum. Then there is some other interval [u, v] that has a larger sum. But shifting u to 1 cannot decrease the sum (since we would then be subtracting out 0), and shifting v to kcannot decrease the sum (since k maximizes PS(k)). Thus [u, v] cannot be an interval with a larger sum.

Let  $PS(j) = \sum_{i=1}^{J} A[i]$  give the partial sum of the first *j* integer values of *A*.

Let's visualize a second example PS(j):



Observation 2: When PS(j) falls below 0 for the first time, then the largest sum subinterval never includes j—it falls on one side or the other. That is, when PS(j) falls below 0 for the first time, the problem essentially "resets" with PS(j) being "the new 0".

**Proof.** The proof is by contradiction.

Suppose the largest sum subinterval [u, v] contains the first point j where the partial sum drops below 0. Notice that [u, j] corresponds to a negative sum. The interval [j + 1, v] must be larger than [u, v] since we are subtracting out a negative sum. This is a contradiction.

#### LargestSum(A):

```
sum, largest \leftarrow 0
for i \leftarrow 1...n
sum \leftarrow \max(sum + A[i], 0)
largest \leftarrow \max(sum, largest)
```

return largest

This O(n) algorithm follows from our previous two observations.

- We only need to worry about sums corresponding to intervals where *i* is a new "0-point" for the partial sum and *j* maximizes the partial sum
- Going back to our visualization, we are calculating the largest difference between some valley and a subsequent peak

- Why should we examine problems analytically?
  - Analysis is independent of the algorithm's implementation, the language the program is written in, and the hardware on which the program is run
  - Theoretical efficiency almost always implies a path towards practical efficiency
    - When there is a mismatch between a theoretical model's predictions and the observed performance, there is an interesting systems problem to be solved!

My research group relies on this!

- Why use worst-case analysis?
  - Worst-case is a *real* guarantee.
  - Worst-case captures efficiency reasonably well in practice. Exceptions are rare (e.g., Quicksort) and interesting.
  - Average case is hard to quantify—we often don't know the true distribution of inputs, so what are we analyzing the average of?

- What does efficient actually mean?
  - We will say an algorithm is efficient if it runs in time that is polynomial in the size of the input
  - Practical efficiency probably maxes out somewhere between  $O(n \log n)$  and  $O(n^3)$ , depending on the context
  - Not brute force!



- Why use asymptotic analysis?
  - Precise bounds are difficult to calculate
  - Precise runtime is dependent on external factors, often including things we don't consider or can't control (hardware, OS environment, compiler, ...)
  - We often want to compare algorithms, and equivalency up to constant factors is often the right level of detail to have those conversations
    - Once we pick an efficient algorithm, we can optimize the "practical considerations"

#### Asymptotic Analysis

# Big-O

**Definition** (Asymptotic upper bounds): f(n) is O(g(n)) if and only if there exists constants c > 0 and  $n_0 \ge 0$  such that for all  $n \ge n_0$ , we have  $f(n) \le c \cdot g(n)$ 



п

# Big-O

**Definition** (Asymptotic upper bounds): f(n) is O(g(n)) if and only if there exists constants c > 0 and  $n_0 \ge 0$  such that for all  $n \ge n_0$ , we have  $f(n) \le c \cdot g(n)$ 

Example: 
$$f(n) = 3n^2 + 17n + 8$$
  
 $\leq 3n^2 + 17n^2 + 8n^2$  For  $n \geq 1$   
 $= 28n^2$ 

Choosing 
$$c = 28$$
 and  $n_0 = 1$  means  $f(n)$  is  $O(n^2)$ 

#### Class Quiz

Let  $f(n) = 3n^2 + 17n \log_2 n + 1000$ . Which of the following are true?

- A. f(n) is  $O(n^2)$ .
- B. f(n) is  $O(n^3)$ .
- C. Both A and B.
- D. Neither A nor B.

### Big-Omega

**Definition** (Asymptotic lower bounds): f(n) is  $\Omega(g(n))$  if and only if there exists constants c > 0 and  $n_0 \ge 0$  such that for all  $n \ge n_0$ , we have  $f(n) \ge c \cdot g(n)$ 



п

#### Big-Omega

**Definition** (Asymptotic lower bounds): f(n) is  $\Omega(g(n))$  if and only if there exists constants c > 0 and  $n_0 \ge 0$  such that for all  $n \ge n_0$ , we have  $f(n) \ge c \cdot g(n)$ 

Example: 
$$f(n) = 3n^2 + 17n + 8$$
  
 $\ge 3n^2$  For  $n \ge 0$ 

Choosing 
$$c = 1$$
 and  $n_0 = 0$  means  $f(n)$  is  $\Omega(n^2)$ 

### **Big-Theta**

**Definition** (Asymptotic tight bounds): f(n) is  $\Theta(g(n))$  if and only if f(n) is O(g(n)) and  $\Omega(g(n))$ 

Equivalently, if there exist constants  $c_1 > 0$ ,  $c_2 > 0$ , and  $n_0 \ge 0$  such that  $0 \le c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$  for all  $n \ge n_0$ .

Ideally, we'd strive for a "tight" bounds whenever we can!

### **Big Oh- Notational Abuses**

- O(g(n)) is actually a set of functions, but the CS community writes f(n) = O(g(n)) instead of  $f(n) \in O(g(n))$
- For example

• 
$$f_1(n) = O(n \log n) = O(n^2)$$

• 
$$f_2(n) = O(3n^2 + n) = O(n^2)$$

- But  $f_1(n) \neq f_2(n)$
- Okay to abuse notation in this way



#### Growth of Functions

**Table 2.1** The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10<sup>25</sup> years, we simply record the algorithm as taking a very long time.

|                      | п       | $n \log_2 n$ | <i>n</i> <sup>2</sup> | <i>n</i> <sup>3</sup> | $1.5^{n}$    | $2^n$                  | n!                     |
|----------------------|---------|--------------|-----------------------|-----------------------|--------------|------------------------|------------------------|
| n = 10               | < 1 sec | < 1 sec      | < 1 sec               | < 1 sec               | < 1 sec      | < 1 sec                | 4 sec                  |
| n = 30               | < 1 sec | < 1 sec      | < 1 sec               | < 1 sec               | < 1 sec      | 18 min                 | 10 <sup>25</sup> years |
| n = 50               | < 1 sec | < 1 sec      | < 1 sec               | < 1 sec               | 11 min       | 36 years               | very long              |
| n = 100              | < 1 sec | < 1 sec      | < 1 sec               | 1 sec                 | 12,892 years | 10 <sup>17</sup> years | very long              |
| <i>n</i> = 1,000     | < 1 sec | < 1 sec      | 1 sec                 | 18 min                | very long    | very long              | very long              |
| n = 10,000           | < 1 sec | < 1 sec      | 2 min                 | 12 days               | very long    | very long              | very long              |
| n = 100,000          | < 1 sec | 2 sec        | 3 hours               | 32 years              | very long    | very long              | very long              |
| <i>n</i> = 1,000,000 | 1 sec   | 20 sec       | 12 days               | 31,710 years          | very long    | very long              | very long              |

#### Playing with Logs: Properties

• In this class,  $\log n$  means  $\log_2 n$ ,  $\ln n = \log_e n$ 

• Constant base doesn't matter:  $\log_b(n) = \frac{\log n}{\log b} = O(\log n)$ 

- Properties of logs:
  - $\log(n^m) = m \log n$
  - $\log(ab) = \log a + \log b$
  - $\log(a/b) = \log a \log b$

 $a^{\log_a n} = n$ 

We will use this a lot!

#### Exponents

$$n^{a} \cdot n^{b} = n^{a+b}$$
$$(n^{a})^{b} = n^{ab}$$

### **Comparing Running Times**

- When comparing two functions, helpful to simplify first
- $\ln n^{1/\log n} = O(1)?$

• Is  $\log \sqrt{4^n} = O(n^2)$ ?

•  $ls n = O(2^{\log_4 n})?$ 

### **Comparing Running Times**

- When comparing two functions, helpful to simplify first
- $\ln n^{1/\log n} = O(1)?$ 
  - Simplify  $n^{1/\log n} = (2^{\log n})^{1/\log n} = 2$ : True
- Is  $\log \sqrt{4^n} = O(n^2)$ 
  - Simplify  $\log \sqrt{2^{2n}} = \log 2^n = n \log 2 = O(n)$ : **True**
- $\operatorname{ls} n = O(2^{\log_4 n})?$

• Simplify  $2^{\log_4 n} = 2^{\frac{\log_2 n}{\log_2 4}} = 2^{(\log_2 n)/2} = 2^{\log_2 \sqrt{n}} = \sqrt{n}$  : False

#### **Tools for Comparing Asymptotics**

• We cause limits to show asymptotic bounds

• If 
$$\lim_{n \to \infty} \frac{f(x)}{g(x)} = 0$$
, then  $f(x) = O(g(x))$ 

• If 
$$\lim_{n \to \infty} \frac{f(x)}{g(x)} = c$$
 for some constant  $0 < c < \infty$ , then  $f(x) = \Theta(g(x))$ 

#### **Tools for Comparing Asymptotics**

- Logs grow slowly than any polynomial:
  - $\log_a n = O(n^b)$  for every a > 1, b > 0
- Exponentials grow faster than any polynomial:
  - $n^d = O(r^n)$  for every d > 1, r > 0
- Taking logs
  - As  $\log x$  is a strictly increasing function for x > 0,  $\log(f(n)) < \log(g(n))$  implies f(n) < g(n)
  - E.g. Compare  $3^{\log n} vs 2^n$ 
    - Taking log of both,  $\log n \log 3 \vee s n$
  - Beware: when comparing logs, constants matter!