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Abstract
When one uses virtual machines for application compati-
bility, such as running Windows programs on Linux, the
user only wants the API components, yet must emulate a
disk drive and execute a second, counterproductive level
of media heuristics and I/O scheduling. Systems should
have a clean interface between API implementation and
media optimization, which would lead to more efficient
paravirtualization and facilitate rapid, independent evo-
lution of media optimizations and API features. We de-
scribe a design that meets these goals, called Zoochory.

1 Introduction
Modern file systems implement a storage application pro-
gramming interface (API) and optimize media access.
The API implementation is so tightly bound with the me-
dia optimizations that virtual machines (VMs) execute
fruitless, if not counterproductive, optimizations for hard-
ware that is not actually present. This tight coupling
is a design flaw even in the absence of virtualization—
virtualization simply exacerbates the problem. This po-
sition paper argues for a clean separation of these con-
cerns in the design of the OS storage stack. We propose a
storage stack, called Zoochory, that addresses these issues
without sacrificing the benefits of a legacy file system.

Using the Linux storage stack as a running example in
this paper (Figure 1(a)), the VFS layer (top) partially im-
plements the POSIX API, and the block device layer (bot-
tom) implements simple disk scheduling heuristics, such
as the elevator algorithm. Specific file systems in the mid-
dle of the stack, such as ext4, jffs2, and btrfs, com-
plete the POSIX API implementation; possibly extend the
API with features such as copy-on-write checkpointing,
atomic append, or transactions; and optimize media ac-
cess patterns by judicious selection of on-media data lay-
out, sector allocation heuristics, etc.

As a result of mixing storage concerns, Linux users
face an unsavory choice between important hardware op-
timizations and useful features. For instance, the btrfs
file system uses B+ trees to optimize rotational disk
performance and provide a copy-on-write checkpointing
API, but btrfs generally performs worse than a flash-
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Figure 1: Linux storage stack and proposed Zoochory
stack. API components are red, media optimization com-
ponents are blue. Linux/KVM duplicates functionality
and file systems mix both. The proposed storage archi-
tecture cleanly separates these, and features of existing
file systems are refactored as plug-ins in only one layer.
For instance, the API layer in a guest or host applica-
tion might provide Win32, POSIX, or POSIX with check-
pointing (+chkpt), whereas the media manager might use
different media plug-ins such as a log-structure for flash,
B+ trees for rotational disks, and allocation heuristics.

optimized file system when benchmarked on flash stor-
age [11]. For users of flash storage, Linux has introduced
flash-specific file systems, such as jffs2 and f2fs, that
perform and manage wear better than a file system de-
signed for a rotational disk. Flash users must choose
between good performance and advanced APIs, such as
checkpointing. From an engineering perspective, it is im-
practical to expect any one file system to implement all
combinations of feature sets and media optimizations. As
a result, users have to make educated guesses about which
file system best suits their applications and hardware. A
better storage stack would encapsulate these aspects and
allow administrators to compose the right media heuris-
tics and APIs for a given system.

These performance issues are exacerbated when a host
OS virtualizes disks. For instance, the Linux anticipatory
disk scheduler may hold write requests in (guest) mem-
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ory in anticipation of writes to adjacent sectors, which
the guest scheduler might then coalesce into one disk re-
quest. Yet adjacent sectors in a virtual disk may not be ad-
jacent on the physical disk—needlessly delaying a write
and potentially missing better disk optimizations in the
host scheduler. Similarly, file read-ahead is a classic ro-
tational disk optimization, and most OSes tune the degree
of read-ahead to local disk access. When the host issues
read-ahead based on guest read-ahead, the effect can be
amplified to the point that useful data is pushed out of
memory to make room for overly-ambitious, speculative
reads. Having two, independent I/O schedulers can lead
to harmful choices based on inaccurate assumptions about
the guest application or underlying hardware.

Although virtual disk images are simple for the host OS
to implement (e.g., as a file or partition), virtual disks have
serious usability issues. Users struggle to resize file sys-
tems, access files from outside of the VM, share files be-
tween VMs, and efficiently back up important files with-
out dragging along all of the OS boilerplate.

Finally, as an example of how disk images hide more
powerful storage abstractions, consider a journaling file
system in both a guest and a host. Journaling is a common
technique to prevent metadata corruption when writes
span multiple sectors, as a hard disk can only write single
sectors atomically. When a virtual disk image is stored
on a host’s journaled file system, the virtual disk could
trivially write multiple blocks atomically. Instead, how-
ever, the guest will implement a nested journal, which ul-
timately holds data in guest memory to order virtual disk
writes. Guest performance and overall disk scheduling
would likely improve by exposing more information to the
host kernel, such as ordering and atomicity constraints.

The storage stack should separate API components
from media optimizations. Our proposed design, called
Zoochory and illustrated in Figure 1(b), facilitates effi-
cient virtualization. Guests (and the host in a type 2
hypervisor [6]) implement the storage API that applica-
tions need, such as POSIX or Win32, but only the host
need implement the media layer. The API layers express
safety requirements to the media layer, such as write or-
dering, atomic groupings, or, when data is shared, the ex-
pected consistency model (e.g., close-to-open consistency
or locking). The media layer independently optimizes de-
vice accesses based on high-level requirements, informa-
tion about physical media, and system usage patterns.

In the tradition of paravirtualization [3], we assume that
OS developers will make reasonable changes to improve
performance when running as a guest. In practice, both
Windows and Linux have adopted paravirtualized device
drivers. At the storage layer, paravirtualization primarily
streamlines virtual disk emulation. This work aims to de-
fine a more expressive paravirtualized storage interface,
which can improve system performance and modularity.

2 The Cost of Virtual Disks

This section describes a few simple measurements of
the overheads incurred by duplicating storage layers, and
summarizes relevant measurements from recent papers.

Experimental setup. We performed all experiments on a
6-core AMD FX-6300 processor. To fairly compare host
performance, we restricted the host experiments to 1GB
of RAM and set the scheduler affinity to 1 core; guests
also had 1 GB of RAM and 1 CPU, but the host was al-
lotted 2GB RAM for guest experiments. The host root
file system was on its own 2.5TB WD Caviar hard drive,
and experiments were run on 60GB ext4 partitions on a
128GB OCZ Vertex 4 SSD and a 3TB WD Green Intel-
lipower hard drive, respectively. We created a guest root
image on the host root file system, and preallocated a 20
GB raw image on each experiment drive. The host exper-
iment partitions were formatted with ext4 and mounted
with noatime, and, for the SSD, discard. The guest
images were formatted and mounted with similar options,
and KVM was configured with write-through caching for
safety. We hasten to note that the configuration space for
nested storage stacks is substantial; our aim is to measure
reasonable options a typical administrator would select.

We used four standard microbenchmarks from the
filebench test suite [5] to test random and sequential reads
and writes. Both guest and host used Ubuntu 12.10 server,
with KVM 1.2.

Results. We found that the nesting of file systems in-
curred significant cost to throughput, especially on flash.
For random reads and writes on an SSD, the measured
overheads were 41.9% and 87.2%, respectively. For se-
quential reads and writes, the overheads were 24.4% and
4.7%, respectively.

Rotational disk overheads were generally lower, as the
costs of virtualization were partially masked by high me-
chanical latency. Sequential read throughput was 1.8%
lower than the host, and random read throughput was
5.6% lower. Sequential writes were 9.9% lower and ran-
dom write throughput was 32.3% lower.

Nested file systems. Le et al. measure the cost of nesting
file systems on Linux and KVM, compared to the guest
accessing a drive directly [12]. For instance, I/O latency
is increased by at least 5–15% in the best cases, and la-
tency commonly increases 25%–2× for their workloads.
The main performance benefit observed was in sequential,
read-only microbenchmarks, where the guest’s read ahead
is amplified by read-ahead in the host; in practice, this op-
timization can harm fairness to other guests, or even push
more useful data out of RAM.

Nested schedulers. Boutcher and Chandra also demon-
strate that the worst combination of guest and host I/O
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schedulers reduces I/O throughput to 40% of the least dis-
ruptive combination [4]. They argue for I/O scheduling
in the guest, as the guest has more visibility into appli-
cation patterns; implicit in this argument is the idea that
the guest can make educated guesses about the underly-
ing media. Our position is somewhat different: the host
should do I/O scheduling, as the host knows media details
and understands other guests; but the guest should expose
more performance hints to the host.

Thus, duplicate storage layers can substantially harm
performance, as well as create a number of configuration
pitfalls for the system administrator.

3 Splitting the Storage Stack
This section describes how to separate the storage APIs
from media optimizations, beginning with functional re-
quirements of the API layer. The section then describes
our prototype design, called Zoochory, which meets these
requirements.

3.1 API Layer Requirements
We begin by enumerating the features the API layer re-
quires from the storage layer in any system, with an eye
toward generality and hardware-independence.
• Data storage and naming, sometimes called a block

store—a means to write, identify, and read file data.
Most local file systems identify data by physical loca-
tion. To encapsulate device details, stored data needs a
unique, device-independent identifier.
The storage layer interface should specify whether data
is stored in fixed- or variable-sized blocks; we expect
that both memory and device management will be sim-
pler if the storage layer uses a fixed, common block
size, such as 4KB.

• Extensible metadata storage. File systems track both
common and custom file metadata, such as the last ac-
cess time or security attributes. Thus, the storage layer
should store variable-sized metadata for a file, but its
interpretation should be encapsulated in the API layer.
Explicitly separating data from metadata is an impor-
tant performance hint and safety constraint. Previ-
ous papers have observed that when a host file sys-
tem does metadata-only journaling, metadata writes
in the guest are effectively treated as data writes and
may not be written consistently to stable storage, ul-
timately leading to guest file system corruption if the
host crashes [12].

• Indexing, or a way to find files. An index can be a
hierarchical file system tree, a key/value store, or an
index based on file attributes, such as the artist or genre
tag recorded in a music file.

• Write ordering and atomicity, to ensure that invari-
ants across multiple metadata are upheld on the media.

• In the case of shared storage, a mechanism to detect
concurrent updates may be useful, although many file
systems may prefer to coordinate at the API layer.

• The guest may wish to share additional performance
hints with the host, such as read-only data, expected
access patterns, or data with a short lifespan.
We posit that any media interface meeting these re-

quirements is sufficient to implement any file system API,
such as the file system calls in POSIX or Win32. Demon-
strating this claim is the goal of ongoing work.

3.2 Zoochory Abstractions

Zoochory is a prototype storage stack that meets the above
requirements. Other media abstractions could also meet
these requirements; this is an important design space for
the community to explore. We think the Zoochory de-
sign has some particularly appealing qualities for VMs,
such as efficient migration. We are currently developing
Zoochory within a Linux host and guest. Key Zoochory
abstractions are described below.

Zoochory uses content addressable storage (CAS) for
data storage and naming. In CAS, data is addressed
by a collision-resistant fingerprint function over its con-
tents, such as a SHA-1 hash, rather than by a fixed offset
on a device. CAS is a hardware-independent layer of in-
direction from data fingerprint to physical location. Our
implementation stores data in 4 KB blocks.

We note that CAS has been widely used in distributed
and networked file systems, for deduplication [23, 27],
minimizing data transfer [19], and ensuring integrity [13].
For many of the same reasons, we are interested in CAS
as an alternative block interface for local data storage.

In addition to a CAS data store, Zoochory provides
file recipes and namespaces, upon which the API layer
can implement metadata and other high-level abstractions.
Analogous to a Unix inode, a file recipe stores a list of the
block hashes that compose a file, along with a variable-
sized metadata section. The storage layer does not inter-
pret the metadata section. A recipe’s list of hashes is suf-
ficient to reconstruct the file from its constituent blocks.

Flat namespaces are a building block for the API layer
to implement many common file system abstractions, in-
cluding directory trees and checkpointing. A namespace
is a key/value store used to index files. Keys may be ar-
bitrary byte sequences, such as a hierarchical pathname,
or an arbitrary attribute, such as keywords in a text file.
Values, however, must be the SHA-1 hash of a file recipe.
Our namespace design is partially inspired by Ventana’s
file system views, in which a VM’s file hierarchy is
composed of one or more independent file trees [21]. In
our design, a guest may similarly compose several names-
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paces in order to facilitate sharing, checkpointing, or other
advanced API features. Access control is enforced at the
granularity of a namespace.

To enforce atomic updates to disk and to implement
various consistency models when a namespace is shared,
the namespace API includes minitransactions [1]. Mini-
transactions are essentially an arbitrarily large, atomic
compare-and-swap operation on a set of keys. When a
minitransaction commits, all writes are guaranteed to be
on disk (atomic and durable). For instance, a user may
use a minitransaction to ensure that a set of updates are
written to disk atomically for a private namespace. On
the other hand, close-to-open consistency could be imple-
mented for a shared namespace by retrieving the hash of
a file’s recipe when it is opened, and inserting a modified
hash upon file close. Stronger consistency models or a
transactional file system can detect concurrent modifica-
tion by asserting a key/hash pair.

Example. A guest could implement a POSIX-compliant
file system on Zoochory by mapping complete paths to file
recipes in the namespace. The Zoochory recipe includes
a variable-sized metadata block, which could store fields
typically placed in an inode, as well as an ordered list of
block hashes. Listing a directory, such as /tmp, would
require listing all namespace keys prefixed by /tmp but
without a subsequent /. The metadata block could also
store information such as a symbolic link target. In or-
der to implement an atomic update to metadata, such as
rename, the guest may use a minitransaction to atomi-
cally change a the name to recipe hash mappings.

This design works similarly to a standard Unix file sys-
tem, except that the guest is not aware of any data place-
ment, and expresses only high-level consistency con-
straints. The host is free to place file data on any device,
including a network storage system. Moreover, the use of
content addressing facilitates deduplication and detection
of corrupt data.

Migration. Zoochory facilitates VM migration among
hosts, as it cleanly divorces where data is stored from the
API layers. The relatively small indices and recipes pro-
vide enough information to recreate a file system view on
a new host. Hash based indexing also minimizes unnec-
essary data transfers [19].

Cooperative media management. In some cases, such
as a database, it may make sense for a guest to manage
its own storage cooperatively with the host. For instance,
a guest may wish to use a media optimization plug-in the
host does not trust. For most applications, we expect per-
formance hints will be sufficient.

For the near future, the host will issue the final device
I/O schedule, similar to the Exokernel file system [10].
Safe, direct access to storage hardware by a guest is a
challenging research problem, as existing disk controllers

cannot limit a guest to a subset of a storage device, and a
disk arm must be carefully scheduled to ensure fairness.

4 Independent Evolution of Layers
A key reason to separate the storage stack design is to per-
mit the API and media layers to evolve independently and
rapidly. In other words, system developers should be free
to identify useful API extensions, such as atomic append,
and independently experiment with different heuristics as
new classes of media evolve. Because existing systems
entangle these facets, both evolve more slowly.

4.1 API Evolution
Entangling media and API features in the same code has
slowed API evolution. As a result, applications have re-
sorted to implementing custom file systems within a sin-
gle file [7], which introduces substantial noise into sys-
tem performance analysis and frustrates performance op-
timization. Modern file systems now face a choice: they
must introspect to understand increasingly strange file ac-
cess patterns, or they must provide a storage interface that
better captures applications’ data relationships and safety
constraints. We believe that a more expressive interface
will yield a cleaner design and unlock more performance
optimizations in the long run.

4.2 Media Evolution
In this subsection, we consider a few common classes of
media optimizations in modern file systems and argue that
Zoochory can implement similar optimizations.

Spatial locality. A classic file system heuristic allocates
blocks for the same file from adjacent disk sectors. Simi-
larly, a file system may try to co-locate files of the same di-
rectory, or files that were created at the same time. These
heuristics attempt to optimize future rotational disk ac-
cesses based on write patterns.

The Zoochory media interface conveys sufficient infor-
mation to make similar locality inferences. A recipe iden-
tifies data in the same file, similarity of keys in a names-
pace suggests likelihood of joint access, and the media
layer can observe temporal locality of write requests. Al-
though CAS naturally deduplicates stored data, nothing
prevents the media layer from storing multiple instances
of the same block to optimize future reads (an observa-
tion applied in deduplication systems [25]). Alternatively,
a Zoochory system running on flash media can eliminate
these optimizations and favor deduplication, since it is not
subject to expensive seek times.

Moreover, delaying disk block allocation can improve
spatial locality on disk, and therefore performance. As
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a file grows in the current Linux VFS design, blocks
must be allocated on disk immediately. In contrast, TxOS
deferred block allocation until transaction commit, and
then allocated all blocks at once, yielding substantial per-
formance improvement for certain write-intensive work-
loads [22]. The Zoochory design gives the storage layer
similar flexibility to buffer and group pending writes, im-
proving spatial locality on the physical media.

Finally, we observe that many spatial locality heuristics
are not resilient to sector remapping and other techniques
for masking failures in the storage media. In other words,
these heuristics incorrectly assume that sectors with adja-
cent numbers are also close on the media. For instance,
if sector 10 is failing on the drive, it may be transparently
remapped to sector 6000, frustrating efforts to ensure spa-
tial locality on a rotational disk. Any file system could
solve this by adding another layer that moves data from a
remapped sector back to a closer sector (say 15) and up-
dates the indexing metadata. Because every file system
will require this facility for sustained performance, and
because detecting and correcting for sector remapping can
be tricky, it makes more sense to encapsulate and reuse
this code.

Optimized indexing data structures. Several recent
file systems optimize data look-up with specialized data
structures. For instance, ext4 transitioned from storing
directories as lists to trees [16], and B+ trees are a cor-
nerstone of the btrfs design [17]. Similarly, ext4 also
optimized the internal representation of large, contiguous
disk block allocations by switching from a block list to an
extent list. These data structure shifts follow changes in
expected common-case storage patterns—e.g., expected
average directory size.

Our Zoochory media design can similarly incorporate
optimized data structures, but, unlike a typical file sys-
tem stack, these optimizations are completely encapsu-
lated in the media layer. This separation facilitates the dy-
namic adjustment of on-media structures to actual work-
load characteristics, such as switching from a list to a tree
as an index grows. Dynamic tuning is difficult when as-
sumptions are baked into the file system code.

Write grouping for flash. File systems such as jffs2
optimize flash performance by adopting a log-structured
design. Arguably, the simplest implementation of Zoo-
chory is as a log-structured file system. Speaking more
broadly, nothing in our API mandates a given on-disk for-
mat. For instance, one may write logs of the namespaces
in whatever units make the most sense for the media.

We recognize that a well-specified media layout is crit-
ical, especially for removable media. In our design, any
media plug-in should specify its media layout. Our aim is
to decouple API features from media layouts, facilitating
more rapid system evolution.

5 Related Work
Deduplicating Storage Layers. Flash media com-
monly includes a flash translation layer (FTL) for back-
wards compatibility, which internally allocates blocks; the
file system in turn allocates blocks exposed by the FTL for
its files. The storage community has explored ways to bal-
ance this duplication of roles with the benefits of a layered
design, as each layer has limited visibility into the other,
and little means to express intent. Current approaches in-
clude co-designing a file system with the FTL [15], del-
egating block allocation to the FTL [9, 29], and adapting
file system layout policies to inferred FTL behavior [8].
This paper argues for an approach that encapsulates these
media-specific heuristics from API components, while ex-
posing sufficient information to make good optimizations
in the media layer.

Optimizing Virtual Disk Image Access. Many sys-
tems have been designed to optimize access to virtual
disk images [24, 26] and storage of virtual disk im-
ages [2,18,20,28]. Especially when disk images are stored
on a remote server, these designs may employ CAS as a
building block to minimize data transfer and transparently
deduplicate image boilerplate [14] . Efficient virtual disk
access is an important, practical problem for legacy file
systems; our work aims to identify a more efficient, par-
avirtual alternative to virtual disks.

Virtual Disk Alternatives. VAFS proposes an alterna-
tive paravirtualized interface for storage, but with a fo-
cus on features for efficient sharing, versioning, and exter-
nal VM management [21]. For instance, VAFS facilitates
efficiently patching vulnerabilities in system code across
many VMs. VAFS, however, relies on centralized servers
to manage the state of each object, whereas namespaces
provide the means for individual users or guest OSes to
manage and customize their own file system state.

6 Conclusion
This paper proposes a local storage stack which cleanly
separates the concerns of an API implementation from
media optimizations. Zoochory implementation is ongo-
ing. We expect that this design retains the benefits of cur-
rent storage systems, but also creates new opportunities.
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