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ABSTRACT
Learning analytics systems have the potential to bring enor-
mous value to online education. Unfortunately, many instruc-
tors and platforms do not adequately leverage learning analyt-
ics in their courses today. In this paper, we report on the value 
of these systems from the perspective of course instructors. 
We study these ideas through OARS, a modular and real-time 
learning analytics system that we deployed across more than 
ten online courses with tens of thousands of learners. We 
leverage this system as a starting point for semi-structured 
interviews with a diverse set of instructors. Our study suggests 
new design goals for learning analytics systems, the impor-
tance of real-time analytics to many instructors, and the value 
of flexibility in data selection and aggregation for an instructor 
when working with an analytics system.

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation

Author Keywords
Learning analytics; real-time systems; instructor-centered 
design.

INTRODUCTION
Systems for learning analytics can dramatically improve the 
educational experience of students and instructors by mea-
suring, collecting, and reporting on learner data. Prior work 
in education has shown that learning analytics systems can 
power many useful course tools, such as interventions targeted 
at struggling learners [11], analytical methods that help in-
structors evaluate the coverage and quality of course materials 
[25], and intelligent tutoring systems that provide automated 
learning support [28].

Despite these successes, however, instructors often do not take 
advantage of learning analytics systems in their online courses. 
Recent suggestions posit multiple explanations for this phe-
nomenon. At the instructor level, these include a need for 
predictive models customized to the course and context [10]. 
Learning analytics that power automated interventions are 
time consuming to author and brittle to changes in course 
content and learner populations [1]. Further, many analytical
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measures are difficult to interpret or entirely irrelevant [27].
Motivated by these issues, this paper explores a broad set of
challenges and opportunities for learning analytics systems.

To aid this exploration we built and deployed the Open Ana-
lytics Research Service (OARS), a modular real-time analyt-
ics framework that has now run across more than 10 online
courses and 15,000 students. OARS is an extensible system,
designed to support a variety of skill models, learning models
and visualizations. OARS receives live event streams from
independent learning platforms: these events are processed
by the learning models to update a variety of analyses, and
those analyses are made accessible through visualizations.
The learning models and visualizations also draw from the
skill models, which are created and adjusted independently.
All learner data is stored by anonymous ID, and OARS users
must authenticate through their learning platform to access
and deanonymize their visualizations.

We leveraged OARS as a starting point for semi-structured
interviews with instructors across a diverse set of courses,
from statistics to linguistics, to understand their perception of
analytics systems in practice. We framed these discussions
around three research questions, targeted to inform the design
of future systems and maximize their impact on education:

R1: What do instructors hope to gain from using learning
analytics systems?

R2: What value do learning analytics currently provide
to instructors?

R3: What challenges do learning analytics systems face
in bringing value to instructors?

Beyond these interviews, OARS also contributes several tech-
nical innovations in learning analytics: a strategy for the real-
time transfer of learner data, measures to ensure data security,
and an extensible architecture for real-time models and visual-
izations. While our interview study explores the design space
of learning analytics systems more broadly, we also capture
useful feedback about OARS specifically that can be applied
to future iterations on the system.

Common themes from our interviews surfaced evidence that
supports many existing ideas in the learning analytics and
information visualization literature, as well as several new
findings that are important for the design of future analytics
systems. In particular, we found that instructors who use on-
line courses to support in-person interactions with learners
need analytics that are truly real-time to support such interac-
tions. We reaffirmed that learning objectives and skill labels
are very helpful for instructional processes, but found that
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instructors would benefit from content visualization tools to as-
sist them with the process of curating their skill labels. Finally,
instructors require flexibility in data selection and aggregation
to effectively engage with the outputs from learning models.

BACKGROUND
The interdisciplinary literature on teaching and learning, com-
bined with advances in student modeling, provide a foundation
for the OARS framework. As an example, educational psy-
chologists have identified primary factors, such as motivation
[16], cognitive-affective state [2], and growth mindset [9] that
greatly influence learning. Cognitive scientists have proposed
models of human understanding that categorize knowledge
into discrete sets of skills that are either known or unknown
to a learner [5]. Educational researchers have successfully
used skill labels to categorize learning materials, but have
demonstrated they are not readily transferable across learner
populations; differing exposure to related materials predicates
differing levels of skill granularity on various topics [22],
[15]. With so many lenses available to focus on a course, it
is no wonder no single learning framework has managed to
incorporate a significant proportion.

Categorizing and Improving Course Materials
To evaluate the efficacy of course materials, it is helpful to
determine the skills and learning objectives of a course; this
provides useful scaffolding in determining how well the edu-
cational items support the intended knowledge transfer. We
define learning objectives as statements describing the measur-
able expertise learners should possess upon completion of the
course, and we define skills as the smallest actionable units of
knowledge required to answer questions pertaining to these
learning objectives. Together, these form a hierarchy: each
educational item is linked with the skills it teaches and/or tests,
and each skill is matched to the learning objectives it supports.

The gold standard for assessing skills and learning objectives
encapsulated by a course is cognitive task analysis (CTA)
[22]. Analytical models, such as Q-matrices, have been de-
veloped that approximate CTA by correlating learner perfor-
mance across assessment items with skill labels for those same
items [26]. Unfortunately, these methods assume static learner
knowledge state, which is atypical of most online learning en-
vironments where the aim is to transfer knowledge over time.

Since CTA is extremely time and labor intensive, a combina-
tion of analytical models and human insight can be a more scal-
able solution. Instructors can draw from their own experiences
to create a hypothesized set of skills and learning objectives.
These labels can be refined when learners engage with labeled
course materials; for example, if two consecutive assessment
items with the same skill labels produce significantly different
scores, the conceptual difference that’s stumping many stu-
dents on one and not the other is often an unacknowledged or
new skill [22]. The OARS system supports this approach.

Modeling Learner Knowledge
When deployed appropriately, real-time learning analytics
amplify the explanatory power of assessment materials and
provide cues for targeted interventions. Real-time models of

learner knowledge leverage interactions with educational items
to reflect what learners "know" and predict which assessments
they can respond to correctly at a given point in time.

Knowledge tracing algorithms – a class of real-time models
that predict learner performance on assessment activities – are
often used to enhance online educational environments [17],
[28]. To deliver real-time analyses, knowledge tracing models
must either be fit to data from previous learner interactions or
set to reasonable default estimates [5]. The most basic knowl-
edge tracing algorithm is the n-in-a-row correct model, where
a learner is predicted to have mastered a subject area once
they’ve correctly answered several closely related problems
back-to-back; from that point forward, the learner is predicted
to correctly answer all related problems [1].

Bayesian Knowledge Tracing (BKT) is perhaps the most pop-
ular knowledge tracing model among learning scientists, and
has been employed by many intelligent tutoring systems and
course analysis tools, including [17] and [28]. BKT is driven
by a Hidden Markov Model where learner skill mastery is the
binary latent variable of interest. Each skill is either "mas-
tered" or "unmastered" for a given student at a given point in
time. It is parameterized by the probability a learner knows
each skill already, as well as the probabilities of: mastering
a skill after engaging with a learning activity, slipping when
applying a mastered skill, and guessing correctly on an assess-
ment of an unmastered skill.

Most other real-time models of learner knowledge do not as-
sume binary mastery or non-mastery with respect to individual
skills. Similar to BKT, Performance Factors Analysis (PFA)
uses explicit skill labels to model knowledge, however the
knowledge state for each skill is held as a non-binary score of
competency [20]. The standard PFA model has been shown
to perform similarly to BKT with cases for slightly better and
worse performance [20]. Deep knowledge Tracing (DKT)
uses long-short term memory networks (LSTM) to predict
learner knowledge state [21] and outperforms BKT when data
is abundant. Though skill labels can be used as part of DKT’s
feature set, learner knowledge with respect to these skills is
modeled implicitly and is therefore more difficult to interpret.

Because of its popularity and versatility, we used BKT as
the primary analytical model for our first release of OARS.
Intelligent tutors have used BKT as a stopping criteria for
learners engaging with problems in a specific skill area. BKT
mastery estimates have also been used to predict performance
on post-tests in online courses that do not employ mastery
learning. However, if a knowledge tracing model is used to
direct interventions, it may lose this predictive power [1].

RELATED WORK
OARS was designed as a general-case, modular, extensible
system for online learning analytics. In this section we de-
scribe competing learning analytics system architectures, and
instructor-centered design studies for such systems, and ex-
plain how they helped inform our design decisions for OARS.



Architecting Learning Analytics Frameworks
Architectural decisions constrain the kinds of analytical mod-
els, interactive experiences, and educational contexts where a
learning analytics system is useful. The Society for Learning
Analytics Researchers (SOLAR) proposed three criteria for
useful learning analytics platforms: employing transparent
processes and technologies; ensuring modular and extensible
development; and allowing for many use cases across plat-
forms and needs [24]. The creators of moocRP [19] have
added learner privacy to this list of criteria while [7] adds
stipulations for usability and meaningfulness of analytical
measures. We were mindful of these issues while creating
OARS, and reflect on them in our evaluation.

Several approaches have been taken to create learning ana-
lytics systems that are reusable across online learning envi-
ronments. PSLC DataShop provides a large assortment of
analytical tools for anyone looking to do learning analyses or
educational data mining on a course dataset [14]. Though
powerful, it requires users to export data from their learning
platform and import it to the analytics framework, creating
extra friction for instructors and precluding real-time analyses.
Works such as [29] describe open API standards that can be
leveraged for specific kinds of reusable learning analyses, but
fail to address multi-platform support, user authentication or
learner data security. Typically, the analytics platform polls
the learning platform API, and these queries can be computa-
tionally expensive for large numbers of learners when paired
with complicated learning analyses. The for-profit Learnosity
system [18] allows instructors to create educational activities
on a single service that can serve these activities to various
platforms within an iframe and stream back the results; it also
enables learning researchers to build and deploy analytical
models that feed off the collected data. Unfortunately, this
framework cannot capture learner data from the educational
activities that it does not supply and it does not provide per-
sistent storage for analytical results, so it is unable to support
advanced analytics whose computations would be too time
consuming to recompute with every page load. The moocRP
[19] system for learning analytics connects to data exports
maintained and managed by individual academic institutions;
though moocRP is platform-independent, secure and extensi-
ble, this data is not available in real-time.

OARS leverages a lightweight, extensible OAuth API to re-
ceive learner data from separate online learning platforms,
allowing for real-time analyses while preserving platform pri-
vacy controls. In this way, OARS takes a computationally-
processed approach to learner data rather than recomputing
analyses on each page load, and it is better equipped to handle
complex learning analyses.

Designing and Evaluating Learning Analyses
By articulating learning objectives, relating educational con-
tent to skills and reviewing BKT analyses, instructors can
evaluate their online course materials and track learner mas-
tery over time. However, the packaging and presentation of
these analytical practices is likely to affect their usefulness,
and there are many learning analyses that could help instruc-
tors glean more from their courses. Previous work provides

some grounding for the choice and presentation of learning
analyses, but, regrettably, most studies of instructor analytics
rely on satisfaction surveys and feature usage as their main
mode of evaluation, as in [3].

One of the common ways in which learning analytics systems
(OARS included) provide for the reporting of data about learn-
ers and their contexts, is through information visualization.
Infovis is used to support intuitive data exploration without
requiring an understanding of complex mathematical models
[12]. Our goal for OARS data visualization aligns with the
three steps of the visual exploration paradigm in [12]: 1) pro-
vide an overview of the data, 2) identifying interesting subsets
of data, and 3) support drilling-down into the details.

Prior work has surveyed course instructors to learn about their
interests and needs with respect to learning analytics [6], [8].
In these studies, instructors expressed interest in: qualitative
evaluation of course content and experiences as expressed by
learners, quantitative measures of content use, differentiation
between groups of learners, distinctions between educational
items, learner performance and outcomes, as well as the rela-
tionships between these different measures.

However, not all analytical measures are equally meaningful,
and potential measures should be carefully scrutinized before
being included. [23] finds that regimented adherence to mas-
tery learning (where learners must repeatedly demonstrate
competence with each skill before moving on from a mod-
ule or course) significantly improved outcomes in a blended
online/in-person learning environment. [4] recommends that
learning analytics designers prioritize learner progress with
respect to instructor’s learning goals, and be wary of inappro-
priate and misleading metrics. Further, [4] argues learning
analytics for instructors should support iterative hypothesis
testing to improve course materials. The challenge is to supply
analytics that are generalizable across courses and learning en-
vironments, without sacrificing predictive power. To this end,
the first release of OARS featured skill tagging and knowledge
tracing capabilities, which are broadly applicable and can be
used to evaluate course materials and track learner mastery.

OARS DEPLOYMENT
Through the breadth and scale of OARS’s deployment, we
aimed to to better understand the motivations and needs of
online course instructors. In this section, we provide additional
detail about the set of classes and learners supported by OARS,
our information gathering process, and the system’s various
stages of deployment.

Courses and Students
OARS has provided learning analytics to more than ten online
courses with thousands of students. Table 1 provides summary
data about the courses, which covered a breadth of content:
from statistics and linguistics to philanthropic strategy and
remedial math. Two of the courses ran on our institution’s pub-
lic Open EdX platform, while the remaining four ran on our
institution’s student-oriented platform. Learner populations
similarly ranged from students at private research universities
to enrollees of open online courses.



Instructor Context Learner Population Learners Sections

A1 online open and free ~12,530 1
A2 flipped R1, private ~45 1
U1 online R3, public ~1,590 1
U2 online R1, private ~1,950 1
U3 online R1, private ~325 1
U4 flipped liberal arts ~75 3
U5 flipped R1, public ~215 1
U6 flipped R3, public ~150 2

Table 1. Course information for the instructors who used OARS. A1 and
A2 were author instructors. U1-U6 were instructors that we recruited to
use OARS with their courses. R1-R3 denotes the Carnegie classification
of the institution, when appropriate. Learner enrollments were approxi-
mated by the number of registered users at the conclusion of the course.

Information Gathering
Development of the Open Analytics Research Service was
initially motivated by our own instructional needs. We hoped
to reach a wider audience, benefit from the large community
of open source developers, and explore new formats for edu-
cational activities. Our learning objectives, skills and course
content were developed using CTA and were further refined us-
ing post-hoc analyses following learner engagement with the
materials. Critically, we needed a real-time analytics solution
that was platform-independent.

Before developing OARS, we first spoke with instructors and
instructional designers for our local statistics course to distill
their data needs. We intended to deploy this course as both
a stand-alone, self-directed online learning experience, and
also as a mixed offline-online course where learners engage
with new material and practice problems in-person and then
complete many more online problems outside of class.

Given these scenarios, we discovered two primary needs. First,
instructional designers wanted to visualize the relationships
between the learning objectives, skills and problems, so that
they could see learner progress with respect to these learning
objectives and skills. The goal would be to identify struggling
learners and skills where a large number of learners were not
showing mastery. Second, instructors needed access to learner
performance on the individual problems – to identify harder
problems and go over them in greater detail. We, the frame-
work developers, also wanted to create an analytics framework
that was protective of learner privacy, able to accommodate
a variety of analytical models and visualizations, and open-
sourced for future development, inspection and deployment.

Release Stages
For our initial OARS deployment, we implemented a minimal
set of models and visualizations to evaluate course content
and to assess learner progress. We built a spreadsheet-based
service for mapping learning objectives to skills and skills to
course problems, and we constructed two BKT algorithms to
predict learner mastery across the articulated skills: one which
made predictions based on learner’s first attempts, the other
which tracked every problem attempt.

After this short trial, we recruited six instructors from five
institutions of higher education who were interested in improv-
ing their courses through the analytical process supported by
OARS. These courses are described in Table 1.

Developing Skill and Concept Labels
CTA is ideal for categorizing and improving course materi-
als, and bringing attention to the course skill set. However,
this process is time consuming, requires several volunteers,
and still needs adjusting when the content is delivered to a
new learner population. The instructors who were interested
in OARS integration were not prepared to go through a full
round of CTA before running their courses; instead, we had
conversations about learning objectives and skills, and an-
swered questions for those instructors creating new content
and mapping skills onto course problems.

OARS ARCHITECTURE
In designing OARS, we confronted many challenges faced
by modern analytics frameworks. The OARS architecture
addresses issues of data security, extensibility, portability and
real-time accessibility in a manner that advances the state of
the art and better serves online instructors’ needs.

Data Flow And Storage (Figure 1)
To ensure extensibility, OARS employs MongoDB, a popular
NoSQL database, for its internal storage; this allows the data
in each table to take on many types (structural forms) instead
of requiring a new table for each additional data type that gets
added to the system. This database allows for five primary
modes of storage: registered courses and learner registrations,
structural course data, raw learner data, models on course con-
tent, and learner models. The registration listings enumerate
the learning platforms, courses associated with each platform,
and the learners enrolled in each course. The structural data
lists out the course modules, problems, any text associated
with the problems and mappings between modules and prob-
lems. The raw learner data is intended for all learner inter-
actions with course material, including attempted problems,
submitted answers, and scores. The models of course content
are extensible, but currently contain learning objectives, skills,
mappings between the learning objectives and skills, and map-
pings between the skills and problems. Finally, the learner
models encapsulate any information stored about individual
learners that goes beyond their raw interaction data, such as
predicted knowledge state with respect to a given analytical
model; learner models that pertain to the entire course popu-
lation can be stored using an ”all learners“ qualifier instead
of a specific learner ID, though we have not yet encountered
course-wide models which were not readily derived from the
individual learner models.

The course IDs and learner enrollments were the easiest data
to obtain. Our institution hosts two separate versions of EdX
– one instance intended for student learning and one instance
for externally directed courseware. The OARS administrator
adds the course ID and platform name into the system. EdX
supports OAuth-protected enrollment APIs to access the list
of instructors and learners associated with a given course ID.
OARS uses each instance of EdX as an OAuth provider, to



Figure 1. The OARS system is in constant communication with every
linked-up learning platform, updating its analyses in real time to support
immediate user inquiry. This diagram shows the data flows between
OARS, the connected learning platform, and the user’s browser; it also
depicts the flow of data between the OARS services.

authenticate and log in its users; OARS then takes the resulting
OAuth credentials to query the enrollment API, retrieving and
updating the course roster on their behalf from the platform
they have authenticated with.

Obtaining the structural course data and course content models
requires direct user input. EdX has an API for accessing course
content, but it does not list it in order of module or provide
the text associated with each piece of content. To get around
this, an instructor and/or course developer provides the OARS
administrator with a spreadsheet containing ordered entries for
each item in their course, along with the course module, skills
and learning objectives associated with it. (The item IDs are
available to the instructor and/or course developer when they
author content on EdX.) The OARS administrator then uploads
this spreadsheet to extract the course structure and populate
the course content models for skills and learning objectives.
To retrieve the text corresponding to each educational item,
we created a nightly task within EdX that would collect all the
text for all registered courses and send it to OARS.

After exploring several ways of obtaining raw learner interac-
tion data from the EdX platform, we determined it was best
to transmit a real-time stream of learner interactions directly
to OARS via secure HTTPS-encrypted connections. Learner
interactions within EdX are written to their logs, but not ex-
haustively stored to their internal databases – precluding API
access. Nightly log transfers, though feasible, would increase
the latency of learner modeling from a number of seconds to
a full day, which we deemed unacceptable. In collaboration
with our institution’s EdX platform team, we extended EdX
to scrape real-time learner events from the platform logs, and
transmit these events to OARS via a REST API call – for all
events corresponding to one of the registered OARS courses.

The OARS REST event API, authentication service, EdX
query engine, and web interface are all built on Tornado, an
asynchronous web framework for Python. Asynchronous web

Figure 2. The course landing page directs instructor attention to recently
encountered skills where learners are performing poorly.

frameworks are better equipped to handle many concurrent
events, such as HTTP requests, database reads and writes. Tor-
nado is able to leverage multiple server cores to allow for even
greater scalability.

Real-Time Models and Visualizations
OARS was designed to efficiently host a number of learn-
ing models. Each model hosted on the analytics framework
receives a dedicated private virtual machine (VM), read ac-
cess to all non-administrator database documents and limited
write access to store its analyses. To prevent excessively large
database queries, we impose minor limitations on the size and
complexity of allowable queries; this requires models to cache
intermediate results and course maps on their private VMs,
consuming fewer system-wide resources. These analytical
models poll for new and relevant learner events, iteratively
updating the model state for each learner. The models also
poll for updates to course content to trigger internal structural
refreshes as needed.

Our analytics framework enables web-based visualizations
in the form of independent JavaScript documents and sup-
porting MongoDB queries. Each JavaScript document gener-
ates a single-page visualization, and gets assigned a context-
dependent variable path for user access. Mongo queries ag-
gregate and restructure the results from the OARS analytical
models, and share this data by appending it to the top of the
JavaScript document when it is sent to the user’s browser for
rendering. In this way, each visualization can flexibly link to
any other, new visualizations can be added at any time, and
model data gets updated on each page load.

At the time of its release, the OARS system provided three
hierarchically linked visual representations of the course con-
tent and learner progress. Each instructor was met with a list
of the course learning objectives, from which they could drill
down to see the skills related to an individual objective, and



Figure 3. Each skill visualization plots the number of learners who have
mastered a skill against the number of problems they have attempted.
In the second case, several learners who have attempted many problems
have failed to achieve mastery over the skill: "Interpret t-test."

finally click on a skill to see the problems associated with it.
The idea behind this design was to direct instructor attention
towards learner progress in terms of skill mastery and stated
learning objectives rather than individual problem scores. The
problems pages showed every problem associated with a skill,
the number of learners who attempted each problem, and the
number who got it right on their first and final attempt. The
skills pages visualized learner mastery and non-mastery, in re-
lation to the number of problems each of the course’s learners
had attempted involving said skill (Figure 3). The learning
objectives pages visualized the number of learners who had
demonstrated mastery on all the associated skills (Figure 4).
To bring attention to skills with low levels of learner mas-
tery, the landing page was expanded to display the three skills
where learners had encountered enough problems to demon-
strate mastery according to the BKT algorithm but were failing
to show proficiency (Figure 2).

Authentication and Security
Though learning analytics necessitate access to learner data,
our system makes every effort to safeguard learner privacy.
With a platform-dependent OAuth login, we prohibit access
to course data for any party other than registered instructors
within the online learning environment. By verifying their
enrollment status through the EdX enrollment API, we pre-
vent instructors from accessing the learner data for courses
where they have no verifiable affiliation. Our framework’s
servers communicate via encrypted web protocols over a pri-
vate network, the database servers are disabled from receiving
externally-initiated internet traffic, and we employ firewalls
and HTTP rate limiting to prevent common forms of server
intrusion. As an added precaution, we never store person-
ally identifiable information (PII) on OARS and instead use

Figure 4. These visualizations show the proportion of learners who have
mastered all of the skills associated with each learning objective.

externally-generated EdX learner IDs. Learner names are
matched with learner IDs in process memory, as part of the
instructor-authenticated enrollment API query. In contrast,
existing analytics frameworks either omit PII – preventing an-
alytics users from identifying individual learners – or copy PII
onto internal databases where it must be carefully safeguarded.

EVALUATION
Our work with OARS provided a starting point for interviews
with instructors across a diverse set of courses. These inter-
views were aimed at uncovering the challenges and opportuni-
ties for learning analytics in online education, with the goal of
informing the design of future analytics systems.

In this section, we report on the structure and execution of
these interviews, centered around our three research questions.
We further discuss how instructors reacted to specific design
decisions made by OARS, and how these reactions can provide
value for future iterations of the system.

Method
We conducted semi-structured interviews with twelve instruc-
tors who ran fully online or partially online courses: the six
instructors who had used OARS in conjunction with their
courses, and six additional instructors who had previous expe-
rience with learning analytics but had not used OARS. We be-
gan by gathering information on the instructors, their courses,
course materials and educational environments. All of the
instructors had at least five years of teaching experience, and
most had more than fifteen. The instructors who used OARS
taught at public and private research universities, as well as
institutions that focused on undergraduate education. The set
of instructors who had not used OARS were similarly repre-
sentative, with added diversity from two community college
instructors. This group of nonusers contributed additional di-
versity in terms of the courses they taught; though there were
no additional linguistics or pre-calculus instructors, we spoke
with instructors for online courses on philosophy, physics, and
statistics for the social sciences.



We discovered there was further diversity in the ways that
instructors developed course content. Two of the instructors
using OARS assembled their own learning materials from
scratch, in conjunction with self-designed learning objectives
and skills; one instructor borrowed learning materials but made
significant adjustments before using them; the remaining three
made less significant adjustments to the skill-labeled learning
materials they used. The six instructors who did not use OARS
followed similar practices: three designed their own courses
using learning objectives, alongside skills or "concepts" (it was
unclear how closely the concepts they described resembled
our notion of skills); the remaining three non-users made use
of available online learning materials.

The remainder of our interviews were focused on the utility of
OARS, and the gaps between instructors’ analytical needs and
the analyses provided by existing analytics frameworks such
as OARS. We asked the instructors to list out all the tasks they
wished learning analytics could assist them with; the inten-
tion was to get a first pass at R1 in the absence of any known
artifact. After talking through these wish lists, we went over
OARS visualizations with non-users to get their feedback, and
spoke with OARS-empowered instructors about their experi-
ences using the platform; this discussion elicited evaluations
of OARS and previous learning analytics frameworks, provid-
ing insights relevant to R2 and R1. Finally, we would return
to discussing instructor’s analytical wish lists, to see what else
might be missing from existing learning analytics frameworks.

The interviews were recorded, reviewed and discussed by two
researchers who were familiar with learning design and trained
in qualitative HCI methods. These researchers took notes on
each interview, compared interpretations, and grouped the
responses into broad themes. We report on these responses
here through the lens of our three research questions.

R1: What do instructors hope to gain from analytics?
We found that all of the instructors wanted to identify concepts
that learners were struggling with. Instructors with in-person
learner interactions wanted to use this information to review or
emphasize more difficult material; the instructors with smaller
courses wanted to know which learners were struggling with
each concept to attempt individual interventions. Instructors
running online courses wanted this feedback so that they could
provide more content relating to the most difficult concepts in
their courses. Those who were publishing their course materi-
als online for the first time wanted to revise their materials in
the areas with the lowest mastery rates. Conversely, instructors
who had taught their course for several years appeared to trust
their course materials more; though they would spend more
time on these concepts, they were more likely to assert that
these concepts were just harder to master.

The three instructors who were in the process of deploying
new courses expressed interest in analytics to aid with course
design. All three described a tabular process of listing out the
concepts they wanted to go over and identifying educational
activities they wanted to pair with these concepts. Apparently,
it was difficult to evaluate the amount of coverage given to
each concept when looking at a spreadsheet because the ed-
ucational items were not necessarily ordered by concept, the

items regularly covered more than one concept, and the items
were of variable length.

Half of the instructors interviewed expressed regret that they
did not know more about their learner populations. Three
explicitly called out times that learners were going through
significant life events outside of class, such as the death of a
family member or birth of a child, which significantly affected
course performance and wondered how many times learners
had neglected to share this information. Other instructors were
interested in obtaining sociodemographic information, prior
coursework, and reasons for learner enrollment. Six instructors
brought up psychological factors including motivation, growth
mindset, and anxiety, which they believe has significantly
impacted learner performance in their courses.

Seven of the instructors mentioned they wanted a better way
to grade and analyze answers for free-form questions; they
found these types of problems to be valuable both for learning
and assessing. Four stated they did not think analytics tech-
nology was adequately advanced to meet these needs. Three
mentioned possible solutions involving rubrics, peer grading,
and/or natural language processing.

The instructors who had in-person interactions with students
all indicated that real-time access to learner data was a firm
requirement. Seven mentioned that they would like to review
the results of the previous day’s assignment. One instructor
said: “The way that [the last online learning system operated],
they were running these reports 24, 48, 72 hours late, which
was useless. ... [The platform developers] were saying most
[instructors] don’t use this technology the way that you’re
using it. ... They should be. If they’re not using it that way,
they ought to to be using it that way.” Four instructors men-
tioned that they wanted to keep tabs on online learner activity
over the course of a week to track progress; some wanted to
have this information to help discourage procrastination, while
others used this as a secondary indicator that learners were
getting stuck. Real-time data appeared less strict for the three
instructors whose online courses did not have strict deadlines.

R2: What value do analytics provide to instructors?
Instructors strongly valued the idea of skill labels, finding that
these made it easier to organize and think about the content.
The two instructors who used OARS while launching new
online courses said that the system helped them to visualize
the course content and identify skills that had fewer related
problems than they would have liked. The instructors who aug-
mented their course materials said that the number of problems
available per skill greatly influenced which of the problems
they cut and added. The two instructors who designed their
own courses and used the skill labels when naming their edu-
cational items found that learners had a better vocabulary to
describe what they were struggling with.

Most instructors also found value in measures of learner mas-
tery. The instructors that used OARS regularly reported using
learner mastery predictions to decide what to review in class,
and when it would be beneficial to go over worked examples
of specific problems. A common process for using OARS was
described as follows: “So the dashboard gives me an idea of



whether they are keeping up with the reading and how they are
doing with their first attempt on the questions and it gives me
a way to plan what I’m going to discuss in class. I might copy
certain excerpts from what they seem to be struggling with,
then we can go over those passages in class." Instructors use
the OARS system for more than simply checking participation,
but also as a means of tracking the class’ progress and tailoring
the pedagogical approach to student challenges. One instructor
said, ”It broke the ice when I told students two-thirds of them
were struggling with a skill. They were no longer embarrassed
to ask questions.“ However, one instructor whose learners
showed unusually high mastery across the skill set did not find
these mastery predictions to be particularly useful, stating that
they would rather focus on the individual problems learners
failed to solve than addressing the skill more generally.

To contextualize instructional needs, it was interesting to hear
the diverse factors that led each of the instructors to their
current online learning environment. Eight of them were pri-
marily attracted by the range of learning activities supported
on their current platform. Two who were using our statistics
course materials and one instructor who was re-purposing a
colleague’s content said they simply chose to use the plat-
form where this content was readily available to them. Two
instructors said that it was most important that they be able to
extract raw learner data and run their own quantitative analyses.
Four instructors cited institutional support for their platform
of choice, as well as access to platform-specific tech support.

R3: What challenges do learning analytics face?
Most instructors who had in-person interactions with learners
said that while helpful, they did not think mastery predictions
based on out-of-class problems was necessarily sufficient for
determining learner knowledge. One instructor commented: “I
don’t have a complete reliance on all the information that’s in
OARS because I don’t know if students are working together
– if it’s showing me what students can do together or if its
individual. And since the environment that I create is so
collaborative, I want them to work together. ... It’s a bit
difficult for me to place heavy reliance on what I see in that
and I tend to place more reliance on what I see in the class and
... low stress environments." The three instructors who had
no in-person interactions with learners said they found these
measures of mastery preferable to single high-stakes events.

Similarly, eight of the instructors stated that they would have
liked to explore deeper connections between various groupings
of learners and their levels of mastery. This is difficult to
achieve in most learning analytics systems, including OARS.
Examples of groupings included distinct course populations
within on-campus course sections, learners who had failed
to master a particular skill, learners who had given a certain
response to a problem, and learners who had interacted with
the system over a particular window of time. (The latter was
a serious sore spot for one fully online self-directed course
where learners could enroll at any time.)

Skill map creation is another big issue for analytics systems.
All of the instructors who submitted skill maps for OARS
preferred a user interface for creating these maps rather than
submitting a spreadsheet. They would also like the course

problems and associated text to be available within OARS
while performing this task. Several instructors identified errors
in their spreadsheets shortly after they had been uploaded.

Another big point of frustration for some instructors came
from the difficulty that learning analytics systems have in
capturing a variety of learner answers. All of the instructors
who used OARS requested either that we add visualizations
to show the number of users who had selected a particular
answer choice to a problem, or that we add greater support for
open-ended responses which get graded at a later time – often
according to a rubric.

DISCUSSION
OARS’s mapping, modeling and visualization functionalities
enhanced users’ understanding of course content and learner
knowledge over time. However, the mastery model was only
useful when there was significant variance in learner perfor-
mance across the skills, and when the problem format was
amenable to automated grading. These results suggest that
knowledge tracing analyses should be made available to all
instructors whose course problems are auto-graded and skill-
labeled. If instructors’ learning objectives require learner mas-
tery across the skills, it is not necessarily problematic when
the majority of learners demonstrate this mastery, even if the
resulting models are less actionable for instructors.

Although most instructors found our BKT-driven visualiza-
tions useful for organizing time spent in class and adjusting
online content, they pushed for several changes to these visual-
izations. The instructors who engaged with learners in-person
wanted a visualization that revealed the predicted skill mastery
states for individual learners, all in one place. They thought
this information would allow them to more easily identify
struggling learners and carry out personalized interventions.
Most of the instructors requested additional flexibility in data
selection and aggregation, to find correlations and test hy-
potheses using the outputs from the BKT model. In summary,
instructor analytics on learner knowledge state should allow
them to inspect predictions across all learners, at the level of
individual learners, as constrained by learner features, and as
constrained by time frames. There was also consensus among
the instructors that analytical results ought to follow the same
order as course content, but be primarily organized by skill.

In online courses with in-person interactions, instructors unan-
imously demanded real-time analytics. These instructors used
up-to-date analyses to intervene when learners were not doing
their work or appeared to be struggling with content. This
suggests that analytics frameworks targeting instructors with
direct learner contact should prioritize the speed and ease
with which data is transferred and processed, when modeling
learner knowledge state.

All of those interviewed thought it was beneficial to identify
learning objectives and skills – for developing course materials,
organizing courses, and monitoring learner progress. However,
there was considerable friction in developing these descriptors,
and visual mapping tools were sought to facilitate this process.
We do not anticipate any significant difficulty in providing such
a tool as a part of a modular analytics service, so long as the



associated learning platform enables external access to course
materials. Therefore, we would recommend that analytics
frameworks include a graphical interface and visualizations to
assist with course map development.

The instructors were unified in asking for improved capture of
learner response data. Some wanted to see which wrong an-
swers learners were providing, to identify learners’ incorrectly
understood skills or misconceptions [13]. Others sought more
meaningful analyses for free-form learner responses, such as
conceptual explanations and long-form calculations. Recently
published models that evaluate essay responses [31] and de-
construct learner code [30] present potential solutions for
these shortcomings. Our interpretation from instructor feed-
back is that all learner responses should be made available to
instructors in one place, and analyzed according to a set of
metrics if possible; also grouped by response when possible.

Though instructors indicated that they would like additional
data about their learners, it was not always clear how this
data would be beneficial. Previous research has shown that
sociodemographic information can be used from the onset of a
course to predict which learners will struggle within a course.
The same may be true of previous courses taken and significant
life events occurring simultaneously. However, it is unclear
where to draw the line between protections for learner privacy
and support for instructor decision making. Even if certain
data are useful, we suggest that this class of information should
be revealed at the discretion of the individual learners.

We assert that OARS improves access to learning analyses.
Although several online learning platforms offer advanced ana-
lytical capabilities, there is typically a single model for learner
progress baked into the platform. Instructors are unable to use
other models without exporting their course data and loading
it into an external analytics framework such as DataShop [14],
and this process impedes real-time analysis. Though attempts
have been made to improve the portability of online course
materials [18], there is a significant time cost to transferring
content across platforms. Instructors that use multiple learning
platforms for a single course have an especially hard time eval-
uating learner progress and content without doing some data
wrangling; whereas we are currently updating our analytics
framework so that it can store and analyze data from multiple
platforms under a shared course ID.

Although OARS was designed with instructor analytics in
mind, learners could certainly use a modified version of our
system in the future. Direct learner engagement with the
analytics framework would also make it easier to collect addi-
tional metacognitive and affective data pertaining to learner
mindset, affect, and motivation. To reduce the friction of using
a secondary system, we would likely embed page links to the
learning platform to facilitate learner navigation.

CONCLUSION
In this paper, we report on findings from a large scale deploy-
ment of OARS, a modular real-time analytics platform for
online education. Our work seeks to better understand the
design space for learning analytics systems, suggesting and
reaffirming many instructor goals such as the importance of

real-time analytics and flexibility of analytic tools for data
manipulation. By better understanding instructor needs, we
hope to empower future learning analytics system to maximize
their positive impact both on students and instructions.
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