PUI Homework 3 – Fall, 2013

page 1

Programming Usable Interfaces Assignment 3:

Iteratively Design and User Test a Photocopier
Assigned: Monday, October 21
First iteration due: Monday, October 27
Final version & full report due: midnight, Sunday November 4
Objective

This goal of this assignment is to give you a first taste of iterative design driven by user testing.

Your Assignment

You will do iterative refinement of a photocopier whose entire user interface is a 400(wide) by 200 (high), black & white pixel touch sensitive display (which you will imitate with a mouse during your testing). In other words, you must have a Flex window that is that size, and you can only use black and white elements.

You must go through at least two rounds of iterations, a paper prototype with 3x5 cards, and at least one more with Flex. You must test at least 2 users (but preferably 4) for each iteration. For your report of each user test, you should prepare User Action Reports of the critical incidents (both good and bad). See the template for the UAR reports on the course website.

Note that if you observe the same problem with multiple users, you can just write it up once, and have multiple references. Keep these reports simple and to the point.

Finally you will hand in a summary report, which has a detailed description of the changes made in each iteration, as a result of the user testing. It should also describe what you learned as a result of the user testing and what you redesigned. This report should be either a .doc or a .pdf and should be no longer than 3 pages. Feel free to include any relevant pictures in this document.

The photocopier should support users being able to:

· Set the lightness/darkness of the copies

· Choose the # of copies (up to 50)

· Choose how many sides the original has, and how you want the output to be:

· 1 sided -> 2 sided, 1 sided -> 1 sided, 2 sided -> 1 sided, or 2 sided -> 2 sided

· Choose whether or not to collate (sort the pages in order)

· Specify a magnification or shrinking factor (percentage: where greater than 100% is enlargement, less than 100% shrinks it)

· Select which paper source to use. Lets assume the copier has 3 paper bins, called “Bin A”, “Bin B” and “Bin C”.

· Provide the ability to staple the output. Note: there are several places a staple could go, based on the orientation of the paper.

· Have a START button to begin copying

· Have a STOP button to cancel a copy job while it's running

· Have an account code to bill (let’s all use 1505, and you should tell your users that is their account #)

· Other useful functions that you think the copier should have (these will count for extra credit – the number of points will depend on the complexity, design, and cleverness of these additional functions) Max Extra credit: 5 points.

· NOTE: Your Flex program will need to have added functionality as it is a higher fidelity prototype. It should not just be a copy of your paper prototype! This means you will need some default values (e.g., for when the user does not select any scaling, stapling, etc.), input-checking (e.g., what happens when the user inputs the wrong account code? What happens if the ‘number of copies’ is over 50? Etc.) and so on. With a more functional prototype, you can loosen the user script a bit to discover new usability questions. This activity should not just be a programming exercise, but it should be an exercise in using programming to create a higher fidelity prototype so that you can learn something new about the usability engineering process.
When the user finally triggers the copying to begin, you should pop up a form to give the user feedback for what the copier is doing. For example:

“Now making 32 copies, darkness=0.7, 1->2 sided, collated, magnification = 100%, stapling in left corner, Bin A,”

Try to get as many different and diverse users as possible during your test. Do not use other students in this class as your users, it is best to get people who are not in Computer Science or HCI. A good test pool would be people who use photocopiers often...

What to Hand In and When

At the half-way point (Sunday, October 27) you need to turn in your task script (what you asked the users to do, and the instructions you gave the users), scanned in version of the paper prototype (or, if you don’t have access to a scanner, an envelope containing your 3x5 cards or a photo-copy of the cards), the UARs from your first iteration (or from all your iterations, if you have finished more than one!).

For the final version (Sunday, November 4), you must hand your Flex program (source/executable/…), and your complete user test report (including what you already handed in at the half way point). The final report will contain UARs for all user tests, and the complete summary of the changes you made along the way. The program and reports should be submitted as a file called firstname-lastname-final-copier.zip. Also, submit a 1 page .pdf that summarizes your experience.

Grading
The goal of the assignment is to learn how to do an informal user test, and how to quickly iterate a design based on user feedback. The goal of the assignment is not to produce a great design (this is about process, not final artifact).

Starting early is essential; you need time to do the tests, and to make changes to your design/program in between the rounds of tests.

Flex Recommendations
Remember that your Data Model needs to communicate with your GUI in order for anything to happen!
Try the following steps before you begin programming in Flex:

1. Start by listing all the widgets you will need (buttons, labels, text areas, images, etc.).
2. Implement only the widgets in FlashBuilder/XML.
3. Then list all the functions you’ll need and what they should do (event handlers, converting functions, etc.).
4. Type the function declarations (i.e. lines like “protected function init():void”), and include “what they should do” as comments in the functions.
5. Choose one chunk to implement & test. Maybe start with the ‘lightness/darkness of the copies’ only.

6. Implement your first “chunk.” Test it to make sure it works.

7. Select, implement, and test another chunk. Make sure your previous chunks still work after you’ve added new code.
