A Study of Techniquesfor Introducing Concurrency into List
Processing Library Routinesin Modern Concurrent Functional
Programming L anguages

Brent Heainga
Student
Division of Science and Mathematics
Computer Science Discipline
University of Minnesota, Morris
heginba@cda.mrs.umn.edu

Scott Lewandowski
Professor of Computer Science
Division of Science and Mathematics
Computer Science Discipline
University of Minnesota, Morris
swl @cda.mrs.umn.edu

Abstract

Erlang is a modern functional programming language with additional features that support explicit concurrency through
lightweight processes and message passing. Erlang's clean semantics and lack of side dfects make it possble to
develop high quality software that can easly take alvantage of the availability of multiple processors. Like most
functional proggamming languages, Erlang provides a number of library routines (e.g. map) for processng and
manipulating lists. These routines are an excellent target for the introduction of concurrent processing techniques. In
this work we explore various methods for introducing concurrency into list processng routines sich as mgp. We report
on the results of our experiments using the Erlang Development Environment, and discuss which approaches to
concurrency are most beneficial given the number of processing nodes available and the properties of the computation
(e.g. type of function being applied, sizeof theinput lig, etc.).

Introduction

Functiona languages have long been favored for the ease they provide in processng lists of information.
Early functional languages, however, were often criticized as being too inefficient. Advances in
implementation techniques (such as graph reduction) and herdware platforms have made it possble in
recet years to design and implement efficient functional programming languages. Many of these
languages (e.g. Concurrent Clean, Haskell, Erlang) provide all of the features of more traditiona functional
languages (e.g. Lisp) as well as extensions for parallel and distributed processng and/or object-oriented
programming [Wilhdm 199, Plasmeijer 1997. As efficiency has improved, more axd more people have
come to recognize the power inherent in modern functional programming languages. Their clean semantics
and lack of side dfeds make it posshle to develop high quality software systems that can easly take
advantage of distributed processng resources. Modern functiona languages are increasingly finding
acceptance as a viable software tod for building solutions to real world problems. Erlang, for example,
was designed as a language for programming large industrial telecommunicaions switching systems. It is
also suitable for programming embedded real-time ntrol systems [Armstrong et al. 1996].

A key data type in functional languages isthelist. These languages typically provide a number of library
routines for building, processng, and manipulating lists. Oddy enough, even in modern functional
languages that support concurrency, little progresshas been made in including concurrent versions of list

processng routines (such as map o sort) into language libraries © that the dficiency benefits of
concurrency can be easily taken advantage of in building solutionsto problems.

Erlang (from Ericsoon Telecommunications Systems) is a modern functional programming language that
provides built in languege support for concurrency and which includes in its libraries a @wncurrent version
of the map function which applies a spedfied function to al dementsin alis. In the next sedion we
describe the map function and our variations in more detail. We then describe our experiments and discuss
our experimental results. Finaly, we discussour plans for future work and enumerate the conclusions we
have reached. A description of the Erlang language focusing spedfically on the features it provides for
supporting concurrent computations as well as spedfic implementation details of our parallél functions can
be found in the appendices.

TheMap Function

Most functional programming langueges provide the ability to apply a function to every itemin alist. This
function is typically called map, and for the purposes of this discusgon will be asuumed to take two
arguments. a function of one agument, and alist. Thefunction isapplied in turn to each of the dements of
the list and the results of these function applicationsare lleded inalist. Put another way:

map(f, I 1,1 2,...,1 o) O [0 1), fC 12),...00)

wheref isafunction of one agument, and where the dements of thelist are of the appropriate type for f .
For example:

map(sqr, [1,3,5,7]) 0 [1,9, 25, 49]

Map can be implemented as a smple linea reaursion over the dements of thelig | . In Erlang, we would
expressthisisasfall ows:

map(F, [H|T]) ~ [apply(F, [H])|map(F, T)];
map(F, [I) - [

Erlang uses pattern matching, a powerful tod for binding values to terms of the same shape. Pattern
matching allows a function to be expressed as a wlledion of case definitions. When defining a function,
the order of the @se definitionsis unimportant due to pattern matching. For example, the base @se of map
(i.e. the dedarative mntaining the eampty list as the secnd argument) may be positioned last because the
pattern for the empty list will in fact be matched when appropriate.

In Erlang there ae severa patterns which are useful when creaing functions that process or manipulate
lists:

* [] denotestheempty list.
 [H] denotesalist containing exactly one term, where His bound to the value of that term
 [H|T] denotesalist containingat least oneterm, where His bound to the value of the first term in the

list, and T is bound to the rest of thelist (note that T will always be a list and that T may be bound to
the empty list).

When used in a mntext similar to the right hand side of the first case definition above, the Erlang operator
| indicates concatenation (i.e. the left operand to] is concaenated to, or added to the front of, the list

denoted by the right hand goerator to |). Thus[1][9, 25]] 0 [1,9, 25] . The gply routine
call sthe function denoted by its first argument on the dements of the list it is given asits smnd argument.
Thus apply(max, [14, 7]) isequivalent to max(14, 7) . Note that the length of the list and the

arity of the function must be the same.

Tracing through the example above resultsin the foll owing:

map(sqr, [1, 3,5, 7])

[apply(sar, [1])|map(sar, [3, 5, 7])]

[apply(sar, [1])[[apply(sar, [3))Imap(sar, [5, 7])]]
[apply(sar, [1])[[apply(sar, [3])I[apply(sar, [5]lmap(sar, [7]]]]
[apply(sar, [1])|[apply(sar, [3])I[apply(sar, [5]|
[apply(sar, [7])Imap(sar, [

[apply(sar, [1])|[apply(sar, [3])I[apply(sar, [5]|
[apply(sar, [7D[[1111]

0 [sar(D)[[sar(3)[[sar5)[[sar(7)[01I]

0 [1][ol[25][49]011]

0 [1,9, 25,49

OOgooo

O

Since modern functional languages are (typically) side dfect freg each application of the function f to an
element of | isindependent of all other applications of f . Therefore, as long as the results are assembled
appropriately, the order of application isirrelevant. This makes map a prime target for the introduction of
concurrency.

The Erlang library provides a straightforward concurrent implementation of the map function, cdled pmap
(i.e. pardle map), where each application of f to an element of | is computed within its own process(i.e.
a separate, self-contained unit of computation). With a sufficiently computationally intensve function and
enough processng nodes this approach yidds sgnificant performance gains over the sequential
implementation. There is however significant overhead associated with this approach — spedfically the
costs of spawning a potentially large number of processes and of sending a potentialy large number of
messages over the ammunicaions network.

In our experiments we investigate the costs and benefits associated with concurrent implementations of the
map function. We examine the performance of the pmap routine provided in the Erlang library as well as
that of two implementations of our own which we briefly describe below. Both of our implementations
borrow a techniqgue commonly used in implementations of quick and merge sorts. When implementing
these sorting algorithms, lists aren’t always broken down to single dements due to the overhead assciated
with reaursion. Rather, thelists are broken down to some pre-determined threshold length, a which point a
smpler (non-reaursive) sorting algorithm (e.g. insertion sort) is used. We observe that in building
concurrent implementations of the list function map it is not necessry to spawn anew processfor each list
element. Overhead costs can be significantly reduced by breaking the list down to some pre-determined
threshold length, at which point the sequential version of map which isdiscussed above @n be used.

Our firg approach, which we'll refer to as smap (i.e. map over sub-lists), is a straightforward modification
of the Erlang library routine pmap. In this implementation we do not creae anew process for each
application of f to an element of | . Instead, we divide the ligt into segments of length eight or lessand
create a processfor each segment wherein the sequential version of map is used to apply f to each of the
eight (or fewer) list elements. Since fewer processes are created using this approach there is less of an
overhead penalty compared to the standard Erlang approach.

In this approach, al of the work involved with splitting the list into segments occurs in one processwhich
we'll refer to astheroat process A new child processis then spawned for each list segment of length eight
or less This leads to a process organization similar to that shown in Figure 1. The roat process is
responsible for reassembling the results from all of the child processes into the final result. For alist of N
elements, this approach requires the creaion of [N/ 8 [+ 1 process.

Figure 1. Process organization in smap

Our seand approach, which we'll refer to as tmap (i.e. map using a tree split), also splits the list into
segments of length eight or less Like smap it creaes a processfor each segment wherein the sequential
version of mapis used to apply f to each of the aght (or fewer) lis elements. The key difference when
compared with the previous approach involves how the list is 9lit up and where the work ocaurs.

In this approach we use a binary splitting technique that leads to a hierarchical processorganization similar
to that shown in Figure 2. Aswasthe ase with smap, the work performed by the leaf processes is that of
applying the sequentia version of map to lists of length eight or less Internal processes (shown in gray)
areresponsible for splitting their input list in half, for spawning two child processes to gperate on each half
of theligt, and for reassambling the results from those dhild processes into aresult. Thisresult is returned
back to the node's parent process For alist of N elements, this approach requires the creation of no more
than 2% ™M/8051 _ 1 rocesses.

Figure 2: Processorganization in tmap

Our Experiments

We implemented bath approaches described above as Erlang routines and ran a number of experiments
mapping functions of various orders of magnitude over lists of varying sizes. Table 1 summarizes the
experiments that we report on in the next sedion.

0o(1) O(N) O(N%) o(N)

map | 16,128,1024 | 16,128,1024, | 16,128, 1024, | 16, 128, 1024,
16384 32768 16384 32768 16384 32768 16384

pmap | 16,128 1024 | 16,128 1024, | 16,128 1024, | 16, 128, 1024,
16384 16384 16384 16384

smap | 16,128,1024, | 16,128,1024, | 16,128,1024, | 16, 128, 1024,
16384 32768 16384 32768 16384 32768 16384

tmap | 16,128,1024 | 16,128,1024, | 16,128, 1024, | 16, 128, 1024,
16384 32768 16384 32768 16384 32768 16384

Table 1: Experiment Summary

To investigate what effed increasing the number of Erlang nodes has on our distributed routines,
experiments were run on configurations of two to five nodes. Each node was garted on its own
workstation — either on one of two Pentium Il 300 MHz systems with 128 Mb o RAM or on one of three
Pentium 200 MHz systems with 64 Mb o RAM. For each configuration of nodes, mapping routine,
mapped function, and lig size, we performed a series of twelve runs. In reporting our figures, we
eliminated the fastest and slowest of the twelve runs and averaged the results of the remaining ten.

Note that the upper limit on the size of lists used in our experimentsis limited in the ase of pmap. Thisis
due to a limit on the number of processes the free version of the Erlang Development Environment will
alow at any given moment.

Our Reaults

The results of our experiments were, by and large, what we expeded, with one small caveat. The graph
shown in Figure 3 below is representative of our overall findings. Note that nodes one through three are
the Pentium 200 MHz systems with 64 Mb o RAM.

270

250 E\

230 \\

210

190 % \ \
170 \ |
150

130 \\
110

time (secs)

70
50
1 2 3 4 5
nodes

‘+map —B—pmap —&—smap —A—tmap ‘

Figure 3: Results of mapping an O(N®) function onto a 16384 element list

The single crossin Figure 3 indicates the exeaution time of the sequential version of map. As discussd
above, the performance of the version of pmap provided in the Erlang library suffers due to the significant
overhead involved in spawning 16384 processes. The performance of smap takes a small initial hit due to
overhead when only two nodes are involved, but quickly and dramatically improves as more processng
nodes are added. While we ae till investigating the reasons for tmap ’sinitial but dramatic performance

gains, we do have an explanation for its lack of improvement as more processng nodes are added. The
problem lies in how the Erlang library routine parallel_eval (which lies at the heat of all the
distributed versions of the map function) assgns processes to nodes. Basicdly, no matter how many
processng nodes are available, tmap as implemented, will only ever use two of them (seethe appendices
for more detail s on the inner workings of our code and the Erlang library routines). Theideathat the work
is plit evenly between two nodes at |east partidly explains why the performance of tmap in thisinstanceis
roughly half that of the sequential version of map.

Figure 4 shows the results of mapping an O(N?) function onto a 32768 element list. The performance
trends are consistent with those shown in Figure 3, athough tmap displays an unusua improvement in its
performancewith the additi on of afifth node. This cannot be attributed to a different subset of nodes being
used, as the experimental results indicate the same nodes would have been used in either case. Since the
time differenceis only a matter of seconds, a probable explanation for tmap’'simproved performance, isa
deaease in network traffic flow. Note also the graph in Figure 4 does not display the results for pmap as
they are significantly higher than the times shown, ranging from 68 seands using five nodes up to 76
seconds using two nodes.

24

i N
20 \\\\
18 \\\\

16

time (secs)
X

'

14 —~—aA
10

1 2 3 4 5
nodes

‘+map —O—smap —A—tmap ‘

Figure 4: Results of mapping an O(N?) function onto a 32768 element list

Figure 5 illustrates the mnsistent behavior of smap over al of the experiments outlined in the previous
sedion. Notice the reaurring pettern in each set of four columns; as more processing nodes are alded,
smap amost invariably produces results more quickly. Additional experiments, varying the size of the
sublists (i.e. using values other than eight), could help determine an optimal relationship between sublist
length and performance

1OOOW/1

100
10
0
O
()
& 14
()
E
0.1
0.01
0.001
S ~ 32768
OQ' 1024
v e D 16 elements
’ I P @D
Voo oy g o\o\eO@@“g@@@ N
VvV o . ,O O\ O® S y
[N "[,' o 'O 'O\
nodes - mapped function magnitude LR
Figure 5: smap performance summary
Future Work

One unsurprising result of this research found that paralel computations in Erlang, using the generic
parallel_eval function, were computationally bound by the dowest processor. Thisis dueto the fact
that processes are digtributed evenly in around robin fashion (i.e. jobj isasdgned to noden mod j). Given
the heterogeneous nature of computing equipment commonly avail able even within a single lab, we would
idedlly like to crege mncurrent routines where faster processors receve a larger portion of the
computation. This would replace the even distribution of work currently supported, and alow for even
further performancegains.

Erlang provides some simple mechanismsto help with load digtribution including the notion of a node pod
that is used in conjunction with aload cheding algorithm. The Erlang libraries provide afunction cdled
statistic_collector which performs load chedks on nodes in the pod by simply cheding the
length of the run queue. The run queue is “simply the number of processes which are ready to run”
[Armstrong et a. 1996]. Colleding Satistics at run time aeates an adaptive load distribution which could
provide a noticeable speal increase, as well as lve many of the problems associated with the round robin
style of processdistribution. Notably, the failure of tmap to spawn processes beyond the scope of two
nodesis lved by adaptive load distribution.

Anocther interesting tod might be the development of a concurrent evaluator, that is, an agorithm that may
determine when concurrency brings about benefits, and conversely when evaluating a function locally is
more beneficial. Because of the transparent distribution provided by Erlang, an implementation of such an
evaluator function may fit nicdy into list processng library routines. For example, the dgorithm might
chedk number of nodes available, current run-queue statistics on those nodes, and finally the length of
arguments given to the possble @ncurrent routine as input. The evaluator would be folded into possble
concurrent function definitions, as opposed to a standalone function, since its role would not be to

determine whether the function itself would benefit from concurrency, but rather if the aurrent computing
Situation would be beneficial. That is, the evaluator would not determine whether function foo would
benefit from concurrency, but rather, if the arrent environment (i.e., number of nodes, current load, etc. . .)
lendsitself well to exeaution of the function in parall €.

Finally, although this reseach concentrated on paralelizing one cmmon list processng routine-map, it
would be trivial to apply such perall eization acrossmany other library functions. For example, common
sorting routines auch as mergesort and quicksort could reg the benefits of concurrency quite easily if
implemented in a distributed manner. Other functions which perform operations over the dements of a
large lists, such as al | —afunction which takes a predicate and a list as arguments and determines whether
each dement in the list satisfies the predicate-may be also be viable andidates [Springer 1989].

Conclusions

The research conducted within the scope of this paper suggests that the addition of concurrent lis
procesgng routines in standard modern functiona programming li braries would be beneficial. The Erlang
shell provides a concurrent-friendly environment where implementation of such parallel routines may take
place Our research demonstrates the ability to easily improve upon current parallel library functions. Our
implementation of smap, for instance, outperformed the smple pmap in adl computational experiments.
Theresearch aso indicates that although using the round robin method of load dstribution produces goad
results, the incorporation of adaptive load dstribution techniques would provide even further performance
benefits.

Appendix 0: Detailsof Distributed Erlang as Related to List Processing

Appendix O is provided for the reader interested in details related to distributed Erlang and its role in
constructing parallel versions of li st processgng routines.

Erlang provides transparent distribution; that is, the ability to spawn remote procedure clls without general
knowledge of other Erlang nodes. An Erlang node is a self-contained unit; an entity that may run
standalone or as part of a network of nodes. Not surprisingly, a single machine may run multiple nodes.
Alternatively, an Erlang node may be thought of as an instance of the Erlang shell with a unique name
identifier. The shell is basically a command line interpreter. Name identifiers are given by the user upon
initiation of the Erlang shell and are of the form ‘nodename@domain.name’. Nodes with identicd magic
cookies (a simple, authority driven, seaurity medianism where a string o alphanumeric characters, called
the maokie, is passed along with every remote procedure @ll) are allowed communication through TCP/IP.
Distribution is thus achieved through lightweight asynchronous message passng between nodes.

“Many operating systems provide wmplex mechanisms guch as remote procedure alls, global name
servers, etc. as components of their systems. Erlang, however, provides smpler primitives from which
such medchanisms can be onstructed” [Armstrong et a. 1996. Implementations of global name and
remote procedure serversareincluded in current rel eases of the Erlang Development Environment. In this
work, we use the suppli ed remote procedure server in order to spedfy which nodes recave what processes.

Included in the Erlang li braries are two important modules — parallel_eval and promise . Thefirst
function provides an abstraction for paralle evaluation and the semnd, a means by which distribution and
concurrency can occur without idle wait time.

Erlang's parallel_eva | function takes as an argument a list of 3-tuples. Every 3-tuples consists of a
module name, function name, and alist of arguments for the given function. The Erlang syntax for thislist
of tuplesis $rown below.

[{mod_name, function, [arg ,,arg gz arg s, ...arg P |

{mod_name, function, [arg ,arg g arg s, ...arg nl}]

The purpose of the agument list isto provide parallel_eval with a pre-determined coll edion of tasks
to be evaluated in parallel. parallel_eva I, on the most basic leve, assgns these @lledions of sub-
tuples to nodes, exeauting remote procedure @lls on those nodes, using the module/function gven in each
3-tuple. parallel_eval also preserves the order of the lledions given as arguments. Purposefully,
parallel_eval is implemented in such a manner that the programmer deddes, through splitting, how
modules, functions, and datawil | be divided into coll ecions.

The definition of parallel_eval isasfollows:

parallel_eval(ArgL) ->
Nodes = [node() | nodes()],
Keys = map_nodes(ArgL, Nodes, Nodes),
lists:map({promise,yield}, [], Keys).

map_nodes([], _,) ->

map_nodes(ArgL, [], Orig) ->
map_nodes(ArgL, Orig, Orig);

map_nodes([{M, F, A}|Tail], [Node|MoreNodes], Orig) ->
[promise:call(Node, M, F, A) | map_nodes(Tail, MoreNodes, Orig)].

One can see from the function definition that parallel_eval gathers a list of nodes using the
nodes() function, appends itsdf (i.e. through the cdl to node()) onto the list, and consequently
generates alist of promisesthroughmap_nodes, using the agument list and available nodes asinput.

map_nodes reaurses through the agument ligt, binding the module, function and argument list, of each
sub-tuple to variables M F, and A respedively. It also inds Node to the first term of the node lig. It then
congtructs alist of function calls to promise:call with the previous bound variables using a rearsive
call with arguments Tai | , MoreNode s, and Orig . It is important to note that when the node lig
becomes empty, it is matched with the seand case definition of map_nodes. Thisdedaration then cdls
map_nodes with the original node list Ori g that conveniently has been passd aong by the function,
creating a round robin style of node distribution. Finally, the yield function is mapped to the list of
promises generated by map_nodes (which has been bound to the variable Keys).

A promise solves many probems related to synchronous message passngin that it provides a place holder
for returned remote procedure @l values, successfully eliminating the need to wait for a processto return
in order to continue with evaluation of an algorithm. The Erlang promise module iswritten as foll ows:

-module(promise).

call(Node, Mod, Fun, Args) ->
spawn(promise, do_call, [self(), Node, Mod, Fun, Args]).

yield(Key) ->
receive
{Key, {promise_reply, R}} ->
R

end.
do_call(ReplyTo,N,M,F,A) ->

R = rpc:call(N,M,F,A),
ReplyTo ! {self(), {promise_reply, R}}.

The promise module while small, provides important support for efficient distributed computations. The
call function spawns as a local processdo_call , providing the aller’s processidentification number
(the @l toself() returnsthe PID), the name of the node on which to exeaute, the module and function
to exeaute, and an argument list as arguments. Note that Erlang’s gpawn function is analogous to UNIX's
“&" inthat it returnsa PID. do_call in turn uses the remote procedure server to evaluate function F in
module Mover the agument list A on node N producing result R. It subsequently sends a message to itself
(using the “1” operator) which includestheresult R

The ideaof a promise, or simply, a place holder, results from this explicit message passng. The function
yield will return R, the desired result, only when it has been informed by do_call that R has bee
evaluated. Thus, yield will only finish evaluating when it receves the proper message, in essence
blocking advancement of the function till a message is sent to it. One can seefrom the above definition of
parallel_eval that wrapping yiel d around a function cdl to promise:call completes the
parald evaluation process

Overdl, Erlang provides a simple but powerful framework within which it is possble to develop
concurrent applicaion routines. The parallel_eva | and promise modules provide good abstractions
over concurrency, giving the programmer sufficient control of dedsions relating to the digtribution of
arguments.

Appendix 1. Implementation Details Regarding Various Parallel M ap Declarations

Appendix O provided significant details of distributed Erlang as it relates to list processng. Appendix 1
will examine various parall el map functions, designed and implemented as part thisresearch.

As gated previoudly in Appendix 0, the crux of parallel_eval lies within the alledion of arguments
given to parallel_eva | in theform of an argument list. For simplicity, we will call the formation of
argument lists, splitting. Erlang provides a simple splitting routine for its parallel library map routine
(pmap) which returns alist containing the norma Module, Function, Argument List triple but restricts the
Argument List to asingleton; that is, of the form:

[{mod_name, function, [term 1}{mod_name, function, [term 8h

Aswas discussed earlier in the paper, this approach israther inefficient, creating an unnecessary amount of
overhead. Two aher splitting techniques though seamed quite plausible, and admittedly, more dficient.

The firg smap, splits the arguments into sublists of eight terms, thereby mimicking the serial nature of
pmap, without the overhead o remote procedure @lls with single dement ligs. The split definition for
smap isdedared in the foll owing way:

split_args(M,F,As,List,Len,Ack) ->
case Len < 9 of
true -> [{lists,map,[{M,F},As,List]}|AckK];
false -> split_args(M,F,As,lists:nthtail(8,List),Len — 8,
[lists, map, [{M, F}, As lists:sublist(List, 8),]} | Ack])
end.

split_args takes a module M a function F, alist As, alist List , the length of List (Len), and an
acaumulator Ack. Thecas e statement Len < 9, gopsthereaurson, while any list larger then 9is lit
on the firg 8 terms, appended to the accumulator, and used as the new Ack in the (tail) reaursive @l to
split_args . The behavior of smap dictates that the non-paralld li brary routine map, will be exeaited
as a spawned process as opposed to pmap, where the actual applied function is gpawned.

The second splitting technique used in tmap , performs a simple binary split of the input. The dedaration

is a bit different though. Instead of giving 3tuples of the form {lists,map,[fool} or
{mod,applied_func,[foo]} to parallel_eval as input, it sends itsdlf, thereby creating a
rearsive spawning behavior. As aresult, the dedaration calling parallel_eval mugt include a base

case to stop the reaursion. We take advantage of this fact, gopping reaursive spawns on lists of length
eight or less then choasing the smap style of evaluation through the non-parall @ library routine map.

tmap , the function which cdl s parallel_eval is defined below:

tmap(M, F, As, O, []) -> [I;
tmap(M, F, As, Len, List) when Len <9 ->
lists:map({M, F}, As, List);
tmap(M, F, As, Len, List) ->
lists:append(rpc:parallel_eval(
tree_split_args(M, F, As, List, Len))).

tree_split_args is defined below:

tree_split_args(M, F, As, List, Len) ->
L O_L=Lendiv 2,
[{newtmap, tmap,
[M, F, As, L_O_L, lists:sublist(List, L_O_L)]},
{newtmap, tmap,
[M, F, As, Len - L_O_L, lists:nthtail(L_O _L, List)]}].

Note div isErlang'sinteger division infix operator, and lists :sublist(List, n) givesthefirst n
items of list List , whilelists:nthtail(n, List) providesitemsn+1 to end of list.
References

[Armstrong et al. 1996 Armstrong, Joe, €t a. (1996). Concurrent Programming in Erlang. Englewoad Cliffs, NJ:
Prentice-Hall Inc.

[Springer 1989 Springer, George; Friedman, Daniel P. (1989) Scheme and The Art of Proggamming. Cambridge,
Massachusetts: The MIT Press.

[Wilhelm 1995] Wilhem, Reinhard; Maurer, Dieter. (1995). Compiler Design. Edinburgh Gate, Harlow, England:
Addison-Wesley Publishing Company Inc.

[Plasmeijer 1997] Plasmeijer, Rinus; van Eekelen, Marko. (1997). Concurrent Clean Language Report. University of
Nij megen.
Acknowledgments

Great appreciation is given to the University of Minnesota, Morris in regards to financial support for this research
through the Morris Academic Partnership (MAP) Program.

Many thanks to Jason Anderson for his helpful work in the University of Minnesota, Morris Computer Science lab
(ak.a. The Dungeon).

Also, aquick thanks to the students of Dian Lopez's Computer Systems and Organization class for putting up with the
times when computers were unavail able due to aur research.

