
Searching in Dynamic Tree-Like Partial Orders

Brent Heeringa1, Marius Cătălin Iordan2, and Louis Theran3

1 Dept. of Computer Science. Williams College. heeringa@cs.williams.edu?
2 Dept. of Computer Science. Stanford University. mci@cs.stanford.edu??

3 Dept. of Mathematics. Temple University. theran@temple.edu? ? ?

Abstract. We give the first data structure for the problem of main-
taining a dynamic set of n elements drawn from a partially ordered uni-
verse described by a tree. We define the Line-Leaf Tree, a linear-sized
data structure that supports the operations: insert; delete; test member-
ship; and predecessor. The performance of our data structure is within
an O(logw)-factor of optimal. Here w ≤ n is the width of the partial-
order—a natural obstacle in searching a partial order.

1 Introduction

A fundamental problem in data structures is maintaining an ordered set S of
n items drawn from a universe U of size M � n. For a totally ordered U ,
the dictionary operations: insert ; delete; test membership; and predecessor are
all supported in O(log n) time and O(n) space in the comparison model via
balanced binary search trees. Here we consider the relaxed problem where U is
partially ordered and give the first data structure for maintaining a dynamic
partially ordered set drawn from a universe that can be described by a tree.

As a motivating example, consider an email user that has stockpiled years of
messages into a series of hierarchical folders. When searching for an old message,
filing away a new message, or removing an impertinent message, the user must
navigate the hierarchy. Suppose the goal is to minimize, in the worst-case, the
number of folders the user must consider in order to find the correct location in
which to retrieve, save, or delete the message. Unless the directory structure is
completely balanced, an optimal search does not necessarily start at the top—it
might be better to start farther down the hierarchy if the majority of messages lie
in a sub-folder. If we model the hierarchy as a rooted, oriented tree and treat the
question “is message x contained somewhere in folder y?” as our comparison,
then maintaing an optimal search strategy for the hierarchy is equivalent to
maintaining a dynamic partially ordered set under insertions and deletions.

Related Work. The problem of searching in trees and partial orders has re-
cently received considerable attention. Motivating this research are practical

? Supported by NSF grant IIS-08125414.
?? Supported by the William R. Hewlett Stanford Graduate Fellowship.

? ? ? Supported by CDI-I grant DMR 0835586 to Igor Rivin and M. M. J. Treacy.

(D,F)

(B,D) (F,H)

(B,C) (D,E) (F,G) (H,I)

(A,B) C

A B

ED F G H I

(D,F)

(B,D) (F,H)

(B,C) (D,E) (F,G) (H,I)

(A,B) C

A (B,J)

ED F G H I

B J

(D,F)

(B,D) (F,H)

(A,B) (D,E) (F,G) (H,I)

(B,C) (B,J)

A C

ED F G H I

B J

(B,D)

(F,H)

(B,C) (D,F)

(F,G) (H,I)

(A,B) C

A (B,J) ED

F G H IB J

(ii) (iii) (iv)

(D,E)

D

FB

CA

E

GH

I

J

(i) (v)

Fig. 1. (i) A partially ordered set {A,B,C,D,E, F,G,H, I, J}. A downward path from
node X to node Y implies X ≺ Y . Note that, for example, E ≺ F and G and I are
incomparable. (ii) An optimal search tree for the set {A,B, . . . , I}. For any query
(X,Y) an answer of X means descend left and an answer of Y means descend right.
(iii) After adding the element J , a standard search tree would add a new query (B, J)
below (A,B) which creates an imbalance. (iv) The search tree after a rotation; the
subtree highlighted in grey is not a correct search tree for the partial order (i). (v) An
optimal search tree for the set {A,B, . . . , J}.

problems in filesystem synchronization, software testing and information re-
trieval [1]. However, all of this work is on the static version of the problem.
In this case, the set S is fixed and a search tree for S does not support the inser-
tion or deletion of elements. For example, when S is totally ordered, the optimal
minimum-height solution is a standard binary search tree. In contrast to the to-
tally ordered case, finding a minimum height static search tree for an arbitrary
partial order is NP-hard [2]. Because of this, most recent work has focused on
partial orders that can be described by rooted, oriented trees. These are called
tree-like partial orders in the literature. For tree-like partial orders, one can find
a minimum height search tree in linear time [3–5]. In contrast, the weighted ver-
sion of the tree-like problem (where the elements have weights and the goal is
to minimize the average height of the search tree) is NP-hard [6] although there
is a constant-factor approximation [7]. Most of these results operate in the edge
query model which we review in Sec. 2.

Daskalakis et al. have recently studied the problem of sorting partial or-
ders [8, 9] and, in [9], ask for analogues of balanced binary search trees for dy-
namic partially ordered sets. We are the first to address this question.

Rotations do not preserve partial orders. Traditional data structures for
dynamic ordered sets (e.g., red black trees, AVL trees) appear to rely on the
total order of the data. All these data structures use binary tree rotations as the
fundamental operations; applied in an unrestricted manner, rotations require
a totally ordered universe. For example, consider Figure 1 (ii) which gives an
optimal search tree for the elements {A,B, . . . , I} depicted in the partial order of
Figure 1 (i). If we insert node J (colored grey) then we must add a new test (B, J)
below (A,B) which creates the sub-optimal search tree depicted in Figure 1 (iii).
Using traditional rotations yields the search tree given in Figure 1 (iv) which
does not respect the partial order; the leaf marked C should appear under the
right child of test (A,B). Figure 1 (v) denotes a correct optimal search for the

A,B

A,C B

A,D C

D

B

C

A E

D

(i)

A

A,E

E

(ii)

A B C D E

C,D

E,F

F,G

F G

D,E

D E

A,B

B,C

B C

A
F G

Fig. 2. Examples of (i) a line contraction where we build a balanced binary search tree
from a path and (ii) a leaf contraction where we build a linear search tree from the
leaves of a node.

set {A,B, . . . , J}. The key observation is that, if we imagine the leaves of a
binary search tree for a total order partitioning the real line, rotations preserve
the order of the leaves, but not any kind of subtree relations on them. As a
consequence, blindly applying rotations to a search tree for the static problem
does not yield a viable dynamic data structure. To sidestep this problem, we
will, in essence, decompose the tree-like partial order into totally ordered chains
and totally incomparable stars.

Our Techniques and Contributions We define the Line-Leaf Tree, the
first data structure that supports the fundamental dictionary operations for a
dynamic set S ⊆ U of n elements drawn from a universe equipped with a partial
order � described by a rooted, oriented tree.

Our dynamic data structure is based on a static construction algorithm that
takes as input the Hasse diagram induced by � on S and in O(n) time and space
produces a Line-Leaf Tree for S. The Hasse diagram HS for S is the directed
graph that has as its vertices the elements of S and a directed edge from x to y if
and only if x ≺ y and no z exists such that x ≺ z ≺ y. We build the Line-Leaf
Tree inductively via a natural contraction process which starts with HS and,
ignoring the edge orientations, repeatedly performs the following two steps until
there is a single node:

1. Contract paths of degree-two nodes into balanced binary search trees (which
we can binary search efficiently); and

2. Contract leaves into linear search structures associated with their parents
(since the children of an interior node are mutually incomparable).

One of these steps always applies in our setting sinceHS is a rooted, oriented tree.
We give an example of each step of the construction in Figure 2. We show that
the contraction process yields a search tree that is provably within an O(logw)-
factor of the minimum-height static search tree for S. The parameter w is the
width of S—the size of the largest subset of mutually incomparable elements of
S—which represents a natural obstacle when searching a partial order. We also
show that our analysis is tight. Our construction algorithm and analysis appear
in Section 3.

To make the Line-Leaf Tree fully dynamic, in Section 4 we give pro-
cedures to update it under insertions and deletions. All the operations, take

O(logw) · OPT comparisons and RAM operations where OPT is the height of
a minimum-height static search tree for S. Additionally, insertion requires only
O(h) comparisons, where h is the height of the Line-Leaf Tree being updated.
(The non-restructuring operations test membership and predecessor also require
at most O(h) comparisons since the Line-Leaf Tree is a search tree). Because
w is a property of S, in the dynamic setting it changes under insertions and
deletions. However, the Line-Leaf Tree maintains the O(logw) ·OPT height
bound at all times. This means it is well-defined to speak of the O(logw) ·OPT
upper bound without mentioning S.

The insertion and deletion algorithms maintain the invariant that the up-
dated Line-Leaf Tree is structurally equivalent to the one that we would have
produced had the static construction algorithm been applied to the updated set
S. In fact, the heart of insertion and deletion is correcting the contraction process
to maintain this invariant. The key structural property of a Line-Leaf Tree—
one that is not shared by constructions for optimal search trees in the static
setting—is that its sub-structures essentially represent either paths or stars in
S, allowing for updates that make only local changes to each component search
structure. The O(logw)-factor is the price we pay for the additional flexibility.
The dynamic operations, while conceptually simple, are surprisingly delicate.
We devote detailed attention to them in the full version of this paper [10].

In Section 5 we provide empirical results on both random and real-world data
that show the Line-Leaf Tree is strongly competitive with the static optimal
search tree.

2 Models and Definitions

Let U be a finite set of M elements and let � be a partial order, so the pair (U ,�)
forms a partially ordered set. We assume the answers to �-queries are provided
by an oracle. (Daskalakis, et al. [8] provide a space-efficient data structure to
answer �-queries in O(1) time.)

In keeping with previous work, we say that U is tree-like if HU forms a
rooted, oriented tree. Throughout the rest of this paper, we assume that U is
tree-like and refer to the vertices of HU and the elements of U interchangeably.
For convenience, we add a dummy minimal element ν to U . Since any search
tree for a set S ⊆ U embeds with one extra comparison into a corresponding
search tree for S ∪ {ν}, we assume from now on that ν is always present in S.
This ensures that the Hasse diagram for S is always connected.

Given these assumptions it is easy to see that tree-like partial orders have
the following properties:

Property 1. Any subset S of a tree-like universe U is also tree-like.

Property 2. Every non-root element in a tree-like partially ordered set S ⊆ U
has exactly one predecessor in HS .

x

yHERE
Y

X

Fig. 3. Given two nodes x and y in S and a third node u ∈ U , a dynamic edge query on
(x, y) with respect to u can answer (i) y, in which case u falls somewhere in the shaded
area labelled Y; (ii) x, in which case u falls somewhere in the shaded area labelled X; or
(iii) here, in which case u falls somewhere in the shaded area labelled HERE. Notice
that if (x, y) forms an actual edge then the query reduces to a standard edge query

.
Let TS be the rooted, oriented tree corresponding to the Hasse diagram for S.

We extend edge queries to dynamic edge queries by allowing queries on arbitrary
pairs of nodes in TS instead of just edges in TS .

Definition 1 (Dynamic Edge-Queries). Let u be an element in U and x
and y be nodes in TS. Let S′ = S ∪{u} and consider the edges (x, x′) and (y, y′)
bookending the unique path from x to y in TS′ . Define T x

S′ , T
y
S′ and T here

S′ to
be the three connected components of TS′ \ {(x, x′), (y, y′)} containing x, y, and
neither x nor y, respectively. A dynamic edge query on (x, y) with respect to u
has one of the following three answers:

1. x: if u ∈ T x
S′ (u equals or is closer to x)

2. y: if u ∈ T y
S′ (u equals or is closer to y)

3. here: if u ∈ T here
S′ (u falls between, but is not equal to either, x or y)

Figure 3 gives an example of a dynamic edge query. Any dynamic edge query
can be simulated by O(1) standard comparisons when HS is tree-like. This is not
the case for more general orientations of HS and an additional data structure is
required to implement either our algorithms or algorithms of [3, 4]. Thus, for a
tree-like S, the height of an optimal search tree in the dynamic edge query model
and the height of an optimal decision tree for S in the comparison model are
always within a small constant factor of each other. For the rest of the paper,
we will often drop dynamic and refer to dynamic edge queries simply as edge
queries.

3 Line-Leaf Tree Construction and Analysis

We build a Line-Leaf Tree T inductively via a contraction process on TS .
Each contraction step builds a component search structure of the Line-Leaf Tree.
These component search structures are either linear search trees or balanced bi-
nary search trees. A linear search tree LST (x) is a sequence of dynamic edge
queries, all of the form (x, y) where y ∈ S, that ends with the node x. A balanced
binary search tree BST (x, y) for a path of contiguous degree-2 nodes between,

but not including, x and y is a tree that binary searches the path using edge
queries.

Let T0 = TS . If the contraction process takes m iterations total, then the
final result is a single node which we label T = T2m. In general, let T2i−1 be the
partial order tree after the line contraction of iteration i and T2i be the partial
order tree after the leaf contraction of iteration i where i ≥ 1. We now show how
to construct a Line-Leaf Tree for a fixed tree-like set S.

Base Cases Associate an empty balanced binary search tree BST (x, y) with
every actual edge (x, y) in T0. Associate a linear search tree LST (x) with
every node x in T0. Initially, LST (x) contains just the node itself.

Line Contraction Consider the line contraction step of iteration i ≥ 1: If
x2, . . . , xt−1 is a path of contiguous degree-2 nodes in T2(i−1) bounded on
each side by non-degree-2 nodes x1 and xt respectively, we contract this path
into a balanced binary search tree BST (x1, xt) over the nodes x2, . . . , xt−1.
The result of the path contraction is an edge labeled (x1, xt). This edge yields
a dynamic edge query.

Leaf Contraction Consider the leaf contraction step of iteration i ≥ 1: If
y1, . . . , yt are all degree-1 nodes in T2i−1 adjacent to a node x in T2i−1,
we contract them into the linear search tree LST (x) associated with x. Each
node yj contracted into x adds a dynamic edge query (x, yj) to LST (x). If
nodes were already contracted into LST (x) from a previous iteration, we
add the new edge queries to the front (top) of the LST.

After m iterations we are left with T = T2m which is a single node. This node
is the root of the Line-Leaf Tree.

Searching a Line-Leaf Tree for an element u is tantamount to searching
the component search structures. A search begins with LST (x) where x is the
root of T . Searching LST (x) with respect to u serially questions the edge queries
in the sequence. Starting with the first edge query, if (x, y) answers x then we
move onto the next query (x, z) in the sequence. If the query answers here then
we proceed by searching for u in BST (x, y). If it answers y, then we proceed
by searching for u in LST (y). If there are no more edge queries left in LST (x),
then we return the actual element x. When searching BST (x, y), if we ever
receive a here response to the edge query (a, b), we proceed by searching for u
in BST (a, b). That is, we leave the current BST and search in a new BST. If the
binary search concludes with a node x, then we proceed by searching LST (x).
Searching an empty BST returns Nil.

Implementation Details The Line-Leaf Tree is an index into HS but not
a replacement for HS . That is, we maintain a separate DAG data structure for
HS across insertions and deletions into S. This allows us, for example, to easily
identify the predecessor and successors of a node x ∈ S once we’ve used the
Line-Leaf Tree to find x in HS . The edges of HS also play an essential role
in the implementation of the Line-Leaf Tree. Namely, an edge query (x, y) is
actually two pointers: λ1(x, y) which points to the edge (x, a) and λ2(x, y) which
points to the edge (b, y). Here (x, a) and (b, y) are the actual edges bookending

the undirected path between x and y in TS . This allows us to take an actual edge
(x, a) in memory, rename x to w, and indirectly update all edge queries (x, z)
to (w, z) in constant time. Here the path from z to x runs through a. Note that
we are not touching the pointers involved in each edge query (x, z), but rather,
the actual edge in memory to which the edge query is pointing.

Edge queries are created through line contractions so when we create the
binary search tree BST (x, y) for the path x, a, . . . , b, y, we let λ1(x, y) = λ1(x, a)
and λ2(x, y) = λ2(b, y). We assume that every edge query (x, y) corresponding
to an actual edge (x′, y′) has λ1(x, y) = λ2(x, y) = (x′, y′).

Node Properties We associate two properties with each node in S. The round
of a node x is the iteration i where x was contracted into either an LST or a
BST. We say round(x) = i. The type of a node represents the step where the
node was contracted. If node x was line contracted, we say type(x) = line,
otherwise we say type(x) = leaf.

In addition to round and type, we assume that both the linear and binary
search structures provide a parent method that operates in time proportional
to the height of the respective data structure and yields either a node (in the
case of a leaf contraction) or an edge query (in the case of a line contraction).
More specifically, if node x is leaf contracted into LST (a) then parent(x) =
a. If node x is line contracted into BST (a, b) then parent(x) = (a, b). We
emphasize that the parent operation here refers to the Line-Leaf Tree and
not TS . Collectively, the round, type, and parent of a node help us recreate
the contraction process when inserting or removing a node from S.

Approximation Ratio The following theorem gives the main properties of the
static construction.

Theorem 1. The worst-case height of a Line-Leaf Tree T for a tree-like S
is Θ(logw) ·OPT where w is the width of S and OPT is the height of an optimal
search tree for S. In addition, given HS, T can be built in O(n) time and space.

Proof. We prove the upper bound here and leave the tight example to the full
version [10]. We begin with some lower bounds on OPT .

Claim. OPT ≥ max{∆(S), log n, logD, logw} where ∆(S) is the maximum de-
gree of a node in TS , n is the size of S, D is the diameter of TS and w is the
width of S.

Proof. Let x be a node of highest degree ∆(S) in TS . Then, to find x in the
TS we require at least ∆(S) queries, one for each edge adjacent to x [11]. This
implies OPT ≥ ∆(S). Also, since querying any edge reduces the problem space
left to search by at most a half, we have OPT ≥ log n. Because n is an upper
bound on both the width w of S and D, the diameter of TS we obtain the final
two lower bounds. ut

Recall that the width w of S is the number of leaves in TS . Each round in
the contraction process reduces the number of remaining leaves by at least half:

round i starts with a tree T2i on ni nodes with wi leaves. A line-contraction
produces a tree T2i+1, still with wi leaves. Because T2i+1 is full, the number
of nodes neighboring a leaf is at most wi/2. Round i completes with a leaf
contraction that removes all wi leaves, producing T2i+2. As every leaf in T2i+2

corresponds to an internal node of T2i+1 adjacent to a leaf, T2i+2 has at most
wi/2 leaves. It follows that the number of rounds is at most logw. The length of
any root-to-leaf path is bounded in terms of the number of rounds. The following
lemma follows from the construction.

Lemma 1. On any root-to-leaf path in the Line-Leaf Tree there is at most
one BST and one LST for each iteration i of the construction algorithm.

For each LST we perform at most ∆(S) queries. In each BST we ask at most
O(logD) questions. By the previous lemma, since we search at most one BST and
one LST for each iteration i of the contraction process and since there at most
logw iterations, it follows that the height of the Line-Leaf Tree is bounded
above by: (∆(S) + O(logD)) logw = O(logw) · OPT . We now prove the time
and space bounds. Consider the line contraction step at iteration i: we traverse
T2(i−1), labeling paths of contiguous degree-2 nodes and then traverse the tree
again and form balanced BSTs over all the paths. Since constructing balanced
BSTs is a linear time operation, we can perform a complete line contraction step
in time proportional to the size of size of T2(i−1). Now consider the leaf contrac-
tion step at iteration i: We add each leaf in T2i−1 to the LST corresponding to
its remaining neighbor. This operation is also linear in the size of T2i−1. Since we
know the size of T2i is halved after each iteration, starting with n nodes in T0,
the total number of operations performed is

∑logn
i=0 O(n

2i) = O(n). Given that
the construction takes at most O(n) time, the resulting data structure occupies
at most O(n) space. ut

4 Operations

Test Membership. To test whether an element A ∈ U appears in T , we search
for A in LST (x) where x is the root of T . The search ends when we reach a
terminal node. The only terminal nodes in the Line-Leaf Tree are either leaves
representing the elements of S or Nil (which are empty BSTs). So, if we find A
in T then test membership returns True, otherwise it returns False. Given
that test membership follows a root-to-leaf path in T , the previous discussion
constitutes a proof of the following theorem.

Theorem 2. Test Membership is correct and takes O(h) time.

Predecessor. Property 1 guarantees that each node A ∈ U has exactly one
predecessor in S. Finding the predecessor of A in S is similar to test member-
ship. We search T until we find either A or Nil. Traditionally if A appears in
a set then it is its own predecessor, so, in the first case we simply return A. In
the latter case, A is not in T and Nil corresponds to an empty binary search
tree BST (y, z) for the actual edge (y, z) where, say, y ≺ z. We know that A

falls between y and z (and potentially between y and some other nodes) so y
is the predecessor of A. We return y. Given that predecessor also follows a
root-to-leaf path in T , the previous discussion yields a proof of the following
theorem.

Theorem 3. Predecessor is correct and takes O(h) time.

Insert. Let A 6∈ S be the node we wish to insert in T and let S′ = S ∪ {A}.
Our goal is to transform T into T ′ where T ′ is the search tree produced by
the contraction process when started on TS′ . We refer to this transformation as
correcting the Line-Leaf Tree and divide insert into three corrective steps:
local correction, down correction, and up correction. Local correction repairs
the contraction process on T for elements of S that appear near A at some
point during the contraction process. Down correction repairs T for nodes with
round at most round(A). Up correction repairs T for nodes with round at least
round(A). Our primary result is the following theorem.

Theorem 4. Insert is correct and takes O(h) time.

A full proof of Theorem 4 appears in the full version [10]. Here we give a
detailed outline of the insertion procedure. Let X be a node such that LST (X)
has t edge queries (X,Y1) . . . (X,Yt) sorted in descending order by round(Yi).
That is, Y1 is the last node leaf-contracted into LST (X), Yt is the first node leaf-
contracted into LST (X) and Yi is the (t−i+1)th node contracted into LST (X).
Define ρi(X) = Yi and µi(X) = round(Yi). If i > t, then let µi(X) = 0.

Local Correction. We start by finding the predecessor of A in TS . Call this node
B. In HS′ , A potentially falls between B and any number of children(B). Thus,
A may replace B as the parent of a set of nodes D ⊆ children(B). We use D to
identify two other sets of nodes C and L. The set C represents nodes that, in TS ,
were leaf-contracted into B in the direction of some edge (B,Dj) where Dj ∈ D.
The set L represents nodes that were involved in the contraction process of B
itself. Depending on type(B), the composition of L falls into one of the following
two cases:

1. if type(B) = line then let parent(B) = (E,F). Let DE and DF be the
two neighbors of B on the path from E to F . If DE and DF are in D then
L = {E,F}. If only DE is in D, then L = {E}. If only DF is in D, then
L = {F}. Otherwise, L = ∅.

2. If type(B) = leaf then let parent(B) = E. Let DE be the neighbor of B
on the path B . . . E. Let L = {E} if DE is in D and let L = ∅ otherwise.

If C and L are both empty, then A appears as a leaf in TS′ and round(A) = 1.
In this case, we only need to correct T upward since the addition of A does not
affect nodes contracted in earlier rounds. However, if either C or L is non-empty,
then A is an interior node in TS′ and A essentially acts as B to the stolen nodes
in C. Thus, for every edge query (B,Ci) where Ci ∈ C, we remove (B,Ci) from

LST (B) and insert it into LST (A). In addition, we create a new edge (B,A)
and add it to HS which yields HS′ . This ends local correction.

Removing edge queries from LST (B) and inserting them into LST (A) may
cause changes in the contraction process that reverberate upward and downward
in the Line-Leaf Tree. Let P = A and Q = B when round(A) ≤ round(B)
and let P = B and Q = A otherwise. Broadly, there are two interesting cases. If
µ1(P) 6= µ2(P) then P was potentially line contracted between ρ1(P) and Q at
some earlier round. If this is the case then we must correct the contraction process
downward on BST (ρ1(P), P) and BST (P,Q). Likewise, when µ1(P) = µ2(P)
then round(Q) might increase, which in turn may affect later rounds of the
contraction process. If this is the case then we must correct the contraction
process upward on Q.

Down Correction. Here we know that P was line contracted between ρ1(P)
and Q at some earlier round. The main idea of Down Correct is to float P
down to the BST created in the same round as P . We do this by examining
the rounds when BST (ρ1(P), P) and BST (P,Q) were created and recursively
calling Down Correct until we arrive at the BST with correct round.

Up Correction. In this case, we know that P increases the round of Q by one
which can affect the contraction process for nodes contracted in later rounds. If
Q was leaf-contracted into E (i.e., type(Q) = leaf and parent(Q) = E) then
P replaces Q in the edge query (Q,E) since Q is now line-contracted between
P and E in the iteration before. If Q was line-contracted into BST (E,F) (i.e,
type(Q) = line and parent(Q) = (E,F)) then BST (E,F) is now split into
BST (E,Q) and BST (Q,F). The interesting case is when, in T , E was leaf-
contracted into F . In T ′, the edge query (E,Q) now appears in LST (Q) and
we’re in a position to recursively correct the contraction process upwards with
Q and F replacing P and Q respectively in the recursive call.

Delete. Deletion removes a node A from a Line-Leaf Tree T assuming A
appears in T . As with insertion, the goal is to repair T so that it mimics T ′ where
T ′ is the result of running the contraction process on TS′ where S′ = S \ {A}.
Deletion is a somewhat simpler operation than insertion. This is because when
we delete A, all of the successors of A become successors of A’s predecessor B. If
A outlasted B in the new contraction process, then B essentially plays the role
of A in T ′. If B outlasted A, then its role does not change. The only problem
is that B no longer has A as a neighbor which may create problems with nodes
contracted later in the process. Repairing these problems is the technical crux of
deletion. A thorough description of deletion, as well as a proof of the following
Theorem also appear in the full version [10].

Theorem 5. Delete is correct and takes O(logw) ·OPT time.

5 Empirical Results

To conclude, we compare the height of a Line-Leaf Tree to the height of an
optimal static search tree in two experimental settings: random tree-like partial

 20

 40

 60

 80

 100

H
e
ig
h
t

LLTree
OPT

1.0
3.0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

H
(L
L
T
re
e
)/
H
(O
P
T
)

Sample Size

3.0

1.0

(a)

 500

 1000

 1500

 2000

 2500

H
e
ig
h
t

LLTree
OPT

 1
 1.12
 1.24

10
1

10
2

10
3

10
4

10
5

H
(L
L
T
re
e
)/
H
(O
P
T
)

Sample Size

1.12

1.0

(b)

Fig. 4. Results comparing the height of the Line-Leaf Tree to the optimal static
search search tree on (a) random tree-like partial orders; and (b) a large portion of the
UNIX filesystem. The non-shaded areas show the average height of both the Line-Leaf
Tree and optimal static algorithm. The shaded area shows their ratio (as well as the
min and max values over the 1000 iterations).

orders and the UNIX directory structure. For these experiments, we consider the
height of a search tree to be the maximum number of edge queries performed on
any root-to-leaf path. So any dynamic edge query in a Line-Leaf Tree counts
as two edge queries in our experiments.

In the first experiment, we examine tree-like partial orders of increasing size
n. For each n, we independently sample 1000 partial-orders uniformly at random
from all tree-like partial orders with n nodes [12] (this distributions give a tree
of height θ(log n), w.h.p. [13–15]). The non-shaded area of Figure 4 (a) shows
the heights of the Line-Leaf Tree and the optimal static tree averaged over
the samples. The important thing to note is that both appear to grow linearly
in log n. We suspect that the differing slopes come mainly from the overheard of
dynamic edge queries, and we conjecture that the Line-Leaf Tree performs
within a small constant factor of OPT with high probability in the uniform tree-
like model. The shaded area of Figure 4 (a) shows the average, minimum, and
maximum approximation ratio over the samples.

Although the first experiment shows that the Line-Leaf Tree is compet-
itive with the optimal static tree on average tree-like partial orders, it may be
that, in practice, tree-like partial orders are distributed non-uniformly. Thus,
for our second experiment, we took the /usr directory of an Ubuntu 10.04
Linux distribution as our universe U and independently sampled 1000 sets of
size n = 100, n = 1000, and n = 10000 from U respectively. The /usr direc-
tory contains 23,328 nodes, of which 17,340 are leaves. The largest directory is
/usr/share/doc which contains 1551 files. The height of /usr is 12. We believe
that this directory is somewhat representative of the use cases found in our mo-
tivation. As with our first experiment, the shaded area in Figure 4 (b) shows the
ratio of the height of the Line-Leaf Tree to the height of the optimal static
search tree, averaged over all 1000 samples for each sample size. The non-shaded

area shows the actual heights averaged over the samples. The Line-Leaf Tree
is again very competitive with the optimal static search tree, performing at most
a small constant factor more queries than the optimal search tree.

Acknowledgements We would like to thank T. Andrew Lorenzen for his help in

running the experiments discussed in Section 5.

References

1. Ben-Asher, Y., Farchi, E., Newman, I.: Optimal search in trees. SIAM J. Comput.
28 (1999) 2090–2102

2. Carmo, R., Donadelli, J., Kohayakawa, Y., Laber, E.S.: Searching in random
partially ordered sets. Theor. Comput. Sci. 321 (2004) 41–57

3. Mozes, S., Onak, K., Weimann, O.: Finding an optimal tree searching strategy
in linear time. In: SODA ’08: Proceedings of the nineteenth annual ACM-SIAM
symposium on Discrete algorithms, Philadelphia, PA, USA, Society for Industrial
and Applied Mathematics (2008) 1096–1105

4. Onak, K., Parys, P.: Generalization of binary search: Searching in trees and forest-
like partial orders. In: FOCS ’06: Proceedings of the 47th Annual IEEE Symposium
on Foundations of Computer Science, Washington, DC, USA, IEEE Computer
Society (2006) 379–388

5. Dereniowski, D.: Edge ranking and searching in partial orders. Discrete Appl.
Math. 156 (2008) 2493–2500

6. Jacobs, T., Cicalese, F., Laber, E.S., Molinaro, M.: On the complexity of searching
in trees: Average-case minimization. In: ICALP 2010. (2010) 527–539

7. Laber, E., Molinaro, M.: An approximation algorithm for binary searching in trees.
In: ICALP ’08: Proceedings of the 35th international colloquium on Automata,
Languages and Programming, Berlin, Heidelberg, Springer-Verlag (2008) 459–471

8. Daskalakis, C., Karp, R.M., Mossel, E., Riesenfeld, S., Verbin, E.: Sorting and
selection in posets. In: SODA ’09: Proceedings of the Nineteenth Annual ACM-
SIAM SODA, Philadelphia, PA, USA, SIAM (2009) 392–401

9. Daskalakis, C., Karp, R.M., Mossel, E., Riesenfeld, S., Verbin, E.: Sorting and
selection in posets. CoRR abs/0707.1532 (2007)

10. Heeringa, B., Iordan, M.C., Theran, L.: Searching in dynamic tree-like partial
orders. CoRR abs/1010.1316 (2010)

11. Laber, E., Nogueira, L.T.: Fast searching in trees. Electronic Notes in Discrete
Mathematics 7 (2001) 1–4

12. Meir, A., Moon, J.W.: On the altitude of nodes in random trees. Canadian Journal
of Mathematics 30 (1978) 997–1015

13. Bergeron, F., Flajolet, P., Salvy, B.: Varieties of increasing trees. In: CAAP
’92: Proceedings of the 17th Colloquium on Trees in Algebra and Programming,
London, UK, Springer-Verlag (1992) 24–48

14. Drmota, M.: The height of increasing trees. Annals of Combinatorics 12 (2009)
373–402 10.1007/s00026-009-0009-x.

15. Grimmett, G.R.: Random labelled trees and their branching networks. J. Austral.
Math. Soc. Ser. A 30 (1980/81) 229–237

