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Abstract. We consider the problem of finding minimum reset sequences in syn-
chronizing automata. The well-known Černý conjecture states that every n-state
synchronizing automaton has a reset sequence with length at most (n − 1)2.
While this conjecture gives an upper bound on the length of every reset se-
quence, it does not directly address the problem of finding the shortest reset se-
quence. We call this the MINIMUM RESET SEQUENCE (MRS) problem. We give
an O(kmnk + n4/k)-time dn−1

k−1
e-approximation for the MRS problem for any

k ≥ 2. We also show that our analysis is tight. When k = 2 our algorithm re-
duces to Eppstein’s algorithm and yields an (n−1)-approximation. When k = n
our algorithm is the familiar exponential-time, exact algorithm. We define a non-
trivial class of MRS which we call STACK COVER. We show that STACK COVER

naturally generalizes two classic optimization problems: MIN SET COVER and
SHORTEST COMMON SUPERSEQUENCE. Both these problems are known to be
hard to approximate, although at present, SET COVER has a slightly stronger lower
bound. In particular, it is NP-hard to approximate SET COVER to within a factor
of c · logn for some c > 0. Thus, the MINIMUM RESET SEQUENCE problem is
as least as hard to approximate as SET COVER. This improves the previous best
lower bound which showed that it was NP-hard to approximate the MRS on bi-
nary alphabets to within any constant factor. Our result requires an alphabet of
arbitrary size.

1 Introduction

In the part orienteering problem [1], a part drops onto a pan which is moving along a
conveyor belt. The part is in some unknown orientation. The goal is to move the part
into a known orientation through a sequence of pan tilts. The sequence of tilts should
be universal in the sense that, regardless of its initial position, the tilts always bring
the part back to the some known orientation. If Q is a finite set of n possible states
that the part can occupy, Σ is a finite alphabet of m symbols representing the types of
tilts, and δ : Q × Σ → Q is a state transition function mapping states to states based
on the action of a tilt from Σ, then A = (Q,Σ, δ) forms a simple deterministic finite
automaton (omitting start and accept states).

We extend δ to sequences δ : Q × Σ∗ → Q in the natural way: δ(q, ε) = q and
δ(q, xw) = δ(δ(q, x), w) where q ∈ Q, ε is the empty sequence, x ∈ Σ and w ∈ Σ∗.
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Fig. 1: An example of a synchronizing and a non-synchronizing automata. Notice that
the automaton in (a) admits the reset sequence BAAABAAAB while the automaton
in (b) has no reset sequence.

We also let δ operate on sets of states instead of a single state. That is, if Q′ ⊆ Q and
z ∈ Σ∗ then δ(Q′, z) = {δ(q, z) | q ∈ Q′}.

Given an automaton A = (Q,Σ, δ), a sequence w ∈ Σ∗ is a reset sequence for A
if and only if |δ(Q,w)| = 1. We call w a reset sequence because it resets the state of
a finite automaton back to some known state. Given the automaton formulation of the
part orienteering problem above, it is easy to see that finding an orienting sequence of
tilts is equivalent to finding a reset sequence in an automaton.

Some automata have reset sequences and some do not (see Figure 1). If an automa-
ton has a reset sequence, then we say it is synchronizing. Checking if an automaton is
synchronizing can be done in polynomial time using dynamic programming [2], how-
ever finding the shortest reset sequence is NP-hard [3]. We call finding the shortest re-
set sequence of an automaton the MINIMUM RESET SEQUENCE (MRS) problem. Since
it is unlikely that efficient algorithms exist for the MRS problem, we consider approxi-
mating the shortest reset sequence.

1.1 Prior and Related Work

Arguably the most well-known open problem in automata theory today is a conjecture
on the length of the minimum reset sequence. Posed in 1964, Černý conjectured that any
n-state, synchronizing automaton has a reset sequence with length at most (n−1)2 [4].
Over 40 years later, this problem remains open and continues to draw considerable at-
tention. The current best upper bound on the MRS is (n3−n)/6 [5, 6]. For large classes
of automata, Černý’s conjecture holds [3, 7, 8]. In particular, Eppstein [3] gives a poly-
nomial time algorithm for finding reset sequences with length at most (n − 1)2 for
automata where the transition function has certain monotonicity properties and Kari [8]
shows that Černý’s conjecture holds when the graph underlying the automaton is Eule-
rian.



While Černý’s conjecture claims an upper bound on the length of the shortest reset
sequence, it does not directly address the problem of finding the shortest reset sequence.
For example, in the part orienteering problem, when an O(log n) reset sequence exists,
improving from an O(n2) solution to an O(n log n) solution may provide an enormous
savings in production costs. Berlinkov recently showed that it NP-hard to approxi-
mate the MRS problem to within any constant factor [9]. This result holds for binary
alphabets. In addition, Olschewski and Ummels showed that finding the minimum reset
sequence and determining the length of the minimum reset sequence are in FPNP and
FPNP[log] respectively [10].

1.2 Results

We begin in Section 2 by giving a simpleO(kmnk+n4/k)-time dn−1k−1 e-approximation
for MINIMUM RESET SEQUENCE for any k ≥ 2. Here n is the number of states in the
automaton and m is the size of the alphabet. When k = 2, this algorithm reduces to
Eppstein’s algorithm [3] so our analysis shows that his algorithm produces an (n− 1)-
approximation. When k = n our algorithm becomes the standard exponential-time,
exact algorithm. We also show that our analysis is tight. In Section 3 we define a non-
trivial class of MRS which we call STACK COVER. We show that STACK COVER is a
natural generalization of two classic optimization problems: SET COVER and SHORT-
EST COMMON SUPERSEQUENCE. Under the assumption that P 6= NP, SHORTEST
COMMON SUPERSEQUENCE has no α-approximation for any constant α > 0 [11].
This matches the lower bound given by Berlinkov, albeit for alphabets of arbitrary,
instead of constant size. However, assuming P 6= NP, SET COVER has no c · log n-
approximation for some constant c > 0 [12]. This offers a significant improvement
over the previous best lower bound. We conclude in Section 4 with some conjectures
and open problems. In particular, we offer a roadmap for combining the hardness of ap-
proximating SHORTEST COMMON SUPERSEQUENCE and SET COVER to achieve even
stronger lower bounds for MINIMUM RESET SEQUENCE.

2 A simple approximation algorithm

Our algorithm relies on the following property.

Property 1. Let A = (Q,Σ, δ) be a finite automaton. For every k ≥ 2, A is synchro-
nizing if and only if for every Q′ ⊆ Q such that |Q′| ≤ k there exists x ∈ Σ∗ such that
|δ(Q′, x)| = 1.

Proof. When k = 2, the property reduces to a well-known necessary and sufficient con-
dition for synchronization [2]. It is easy to see that since the property holds for k = 2
then it holds in general since any synchronizing sequence x ∈ Σ∗ for {δ(p, y), δ(s, y)} ⊆
Q can be appended to a synchronizing sequence y ∈ Σ∗ for {p, q} ⊆ Q to form a syn-
chronizing sequence yx for {p, q, s}. ut

Given some k ≥ 2 we create a k-dimensional dynamic programming table D such that,
for all subsets Q′ ⊆ Q where 2 ≤ |Q′| ≤ k if x = ay is an MRS for Q′ where a ∈ Σ



and y ∈ Σ∗ then D(Q′) = (a, δ(Q′, a)). That is, D yields the first letter in the MRS
for Q′ as well as pointer to the next subset of states in the MRS. The base case is when
|Q′| = 1. In this case we simply return the empty sequence. The following lemma
establishes an upper bound on the time required to construct D.

Lemma 1. Given k ≥ 2, constructing D takes times O(mnk).

Proof. Given an automaton A = (Q,Σ, δ), define an edge-labelled, directed multi-
graph G = (V,E) such that V = {Q′ ⊆ Q | 1 ≤ |Q′| ≤ k} and for every U,W ∈ V
we have (U,W ) ∈ E labelled with a ∈ Σ if and only if δ(W,a) = U . That is, if
a brings W to U then there is an edge from U to W labelled with a. We perform a
breadth-first search on G, starting with all the singleton sets of Q. That is, we begin by
considering all sets Q′ such that |Q′| = 1. Whenever we encounter a node R ∈ V for
the first time we let D(R) = (a,R′) where R′ is the parent of R in the breadth-first
search and (R′, R) is labelled with a. We let D(Q′) = ε if |Q′| = 1. If the breadth-
first search fails to reach every node in V then, by Property 1, A is not synchronizing.
Correctness of the construction follows from the fact that we are always considering
the shortest sequences that take a singleton node to a non-singleton node (and, by way
of reversing the edge orientations, the shortest reset sequences). Since the graph has
O(nk) nodes and O(mnk) edges and we are performing a simple BFS, constructing
the table takes time O(mnk). ut

Algorithm 1 APPROX-MRS(A, k) where A = (Q,Σ, δ)

1: X ← Q
2: z ← ε
3: Let D be the dynamic programming table given by Lemma 1.
4: while |X| > 1 do
5: α← min{|X|, k}
6: Choose an arbitrary subset Q′ ⊆ X such that |Q′| = α.
7: while |Q′| > 1 do
8: (a,Q′)← D(Q′)
9: z ← z · a

10: X ← δ(X, a)
11: end while
12: end while
13: return z

Algorithm 1 uses D to successively synchronize k states until only one state remains.
The correctness of the algorithm follows from Property 1.

Theorem 1. Algorithm 1 is an O(kmnk + n4/k)-time dn−1k−1 e-approximation for the
MINIMUM RESET SEQUENCE problem for any k ≥ 2.

Proof. Let k ≥ 2 be given and let z be the MRS for A with length OPT . For any Q′ ⊆
Q such that |Q′| ≤ k, if y is the sequence given for Q′ by D then |y| ≤ OPT . This
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Fig. 2: A tight example for the case n = 9 and k = 3. All transitions not shown are
self-transitions. The optimal solution is z, but Algorithm 1 could return the solution
a1a2a3a4.

follows by construction sinceD gives us a method to find the shortest reset sequence for
all Q′ ⊆ Q such that |Q′| ≤ k. If OPT < |y| then z would be a shorter synchronizing
sequence for Q′, a contradiction.

Notice that in each iteration of line 4 (other than the final iteration) we decrease the
size of X by k − 1 (once |X| < k we perform at most one additional iteration). Thus,
after at most dn−1k−1 e iterations X contains a single state. Since each iteration of line 4
appends a sequence of length at most OPT to z, Algorithm 1 yields a sequence with
length at most dn−1k−1 e ·OPT which yields the desired approximation ratio.

Constructing the dynamic programming table takes time O(kmnk). The inner loop
in line 7 executes at most O(n4/k) times since O(n3) is an upper bound on the reset
sequence. Since the outer loop in line 4 executes at most n times, Algorithm 1 takes
time at most O(kmnk + n4/k). ut

When k = 2, Algorithm 1 reduces to Eppstein’s algorithm. Thus, this algorithm yields
an (n− 1)-approximation for the MINIMUM RESET SEQUENCE problem. When k = n
the dynamic programming table becomes the power-set automata and a breadth-first
search yields the standard exponential-time exact algorithm [13]. It also turns out that
the analysis of Algorithm 1 is tight.

Theorem 2. The analysis of Algorithm 1 is tight.

Proof. We construct an instance of the MRS problem such that Algorithm 1 gives a so-
lution that is dn−1k−1 e times larger than the optimal solution. Let n and k be given. Choose
j = dn−1k−1 e and takeQ = {q1, q2, ..., qn} as the set of states andΣ = {z, a1, a2, ..., aj}
as the alphabet. We define the transition function δ as



δ(qi, ah) =


qd i

k−1 e(k−1)+1 if h = d i
k−1e

qn if ah = z

qi otherwise.

The optimal solution to an instance of this form is the string z which has length 1. How-
ever, Algorithm 1 chooses to merge k arbitrary states. If the sequence of k-states are
(q1, . . . , qk), (qk, . . . , q2(k−1)+1), (q2(k−1)+1, . . . , q3(k−1)+1)..., (q(j−1)(k−1)+1,. . . ,qn),
and if for each tuple the algorithm chooses ai instead of z to merge the states, then
only k states are merged at a time. In this case, the solution that Algorithm 1 gives is
a1a2 . . . aj which has length j = dn−1k−1 e. Thus, our analysis is tight. Figure 2 gives an
example for n = 9 and k = 3.

3 The STACK COVER problem

Here we define a non-trivial class of MINIMUM RESET SEQUENCE problems which
we call STACK COVER. Our primary purpose in introducing this class is to show that
MINIMUM RESET SEQUENCE is hard to approximate, however, STACK COVER may
have independent appeal.

Imagine you have n stacks of cards where each card is painted with multiple colors.
You can peek at any card in any stack at any time. Selecting a color removes the top card
of each stack provided that card is painted with the selected color. The goal is to select
the shortest sequence of colors that empties all the stacks. This is the STACK COVER
problem. When each stack has a single card, then the colors represent sets and STACK
COVER becomes the SET COVER problem. When the stacks have varying heights but
each card is painted with a single color then a stack of cards is a string and STACK
COVER becomes the SHORTEST COMMON SUPERSEQUENCE problem. Below we re-
view the definitions of SET COVER and SHORTEST COMMON SUPERSEQUENCE and
formally show how STACK COVER generalizes both problems.

We now define STACK COVER within the MINIMUM RESET SEQUENCE framework.
We treat the symbols in Σ as colors and then impose some structure on the transition
function. Figure 3 shows the general form of STACK COVER instances. We partition the
set of states Q into n stacks Q1 ∪Q2 ∪ · · · ∪Qn plus a single sink state q̂. Furthermore,
we linearly order each stack Qi as qi1, qi2, . . . , qili , qi(li+1) where each qij is a state in
Qi, and for convenience, qi(li+1) = q̂. That is, we assume the final state in every stack
is the sink state. The transition function must obey this order, so for each 1 ≤ i ≤ n and
for each x ∈ Σ, either δ(qij , x) = qij or δ(qij , x) = qi(j+1) for all 1 ≤ j ≤ li. Finally,
we have δ(q̂, x) = q̂ for all x ∈ Σ. If A = (Q,Σ, δ) is a STACK COVER instance, then
let OPT(A) be the length of the MINIMUM RESET SEQUENCE for A.

SHORTEST COMMON SUPERSEQUENCE as STACK COVER An instance of SHORT-
EST COMMON SUPERSEQUENCE (SCS) is a set of strings R = {t1, . . . , tn} over an
alphabet Σ of size m. That is, each ti is a string in Σ∗. The goal is to find the shortest
string w ∈ Σ∗ such that each string ti is a subsequence of w. We can reduce an SCS



Fig. 3: An instance of STACK COVER.

instance to a STACK COVER instance as follows. Refer to the jth character in the string
ti as tij . Given a set of strings R, construct A = (Q,Σ, δ), such that

Q = {qij | 1 ≤ i ≤ n, 1 ≤ j ≤ |ti|} ∪ {q̂}

and for all qij ∈ Q \ {q̂} and a ∈ Σ

δ(qij , a) =


q̂ if a = tij and j = |ti|
qi(j+1) if a = tij and j < |ti|
qij otherwise.

and δ(q̂, a) = q̂ for all a ∈ Σ.
From the definition, notice that we have created a single state for each character in

R and a transition symbol for each character in Σ. Also, we have added one additional
state q̂, which acts as a single sink node attached to each stack. Every transition from q̂
is a self transition. The transition function δ guarantees that each state has only a single
transition symbol to the next state in the stack. Notice that w ∈ Σ∗ is a reset sequence
for A if and only if w is a supersequence for R.

Jiang and Li [11] showed that SCS has no α-approximation for any α > 0 unless
P = NP. Here n is the number of strings. This hardness result holds even when the
strings have constant length, so given the reduction above, it applies to the MINIMUM
RESET SEQUENCE problem where n is the number of states.

SET COVER as STACK COVER An instance of SET COVER is a base setX = {x1, . . . , xn}
and a collection S = {S1, . . . , Sm} of subsets of X . The goal is to find the smallest



subset S′ ⊆ S such that ∪Si∈S′Si = X . We can reduce SET COVER to STACK COVER
as follows. Given a SET COVER instance (X,S), construct A = (Q,Σ, δ) such that

Q = X ∪ {q̂}
Σ = {1, . . . ,m}

δ(x, j) =

{
q̂ if x ∈ Sj

x otherwise.

In our automaton, we have a single state for each element of X and a single transition
symbol for each subset in S. Again, we add a sink node, q̂, that is connected to every
stack and has only self transitions. We define the transition function so that a node can
be brought to q̂ if and only if a subset containing that character is selected. Notice that
w1 · · ·wl ∈ Σ∗ is a reset sequence for A if and only if

⋃
1≤i≤l Swi

is a cover for X .
SET COVER has no c log n-approximation for some constant c > 0 unless P =

NP [12]. Thus, this lower bound also extends to STACK COVER.

4 Open Problems and Conjectures

The lowers bounds in Section 3 require alphabets of finite, yet arbitrary size. It is an
open problem to determine if these results extend to the case where the alphabet has
constant size.

In addition, the gap between the upper bound on the approximation ratio offered
by Algorithm 1 and the lower bound offered by SET COVER is quite large. One line of
attack in closing this gap is to combine an instance of SHORTEST COMMON SUPER-
SEQUENCE with an instance of SET COVER to produce an instance of STACK COVER
that is harder to approximate than either problem on its own. For example, given A =
(QA, ΣA, δA) and B = (QB , ΣB , δB), where A represents an SCS problem and B
represents a SET COVER problem, we define the natural cross product A×B =

Q = (QA \ {q̂A})× (QB \ {q̂B}) ∪ {q̂}
Σ = ΣA ×ΣB

δ((qij , q), (a, s)) =


q̂ if a = tij and j = |ti| and δB(q, s) = q̂B

(qi(j+1), q) if a = tij and j < |ti| and δB(q, s) = q̂B

(qij , q) if a 6= tij or δB(q, s) 6= q̂B

where q̂A is the sink state of A and q̂B is the sink state of B.
Each state in the SCS automaton A is now paired with a state from the SET COVER

automaton B, creating n stacks for each stack in the original SCS instance, where n is
the number of elements in the SET COVER instance. Likewise, each transition in the SCS
automaton is now paired with a transition from the SET COVER automaton, creating m
transitions for each transition in the original SCS instance. Here m is the number of
subsets in the SET COVER instance. The transition function has become more complex,
but the general concept is straightforward: we can only move downward in a stack if we



select a symbol that corresponds to both the current node’s symbol in the SCS instance
and to one of its subsets in the SET COVER instance.

Assuming OPT(·) gives the length of an optimal solution, it’s clear that OPT(A ×
B) ≤ OPT(A) · OPT(B). However, if we can show that OPT(A) · OPT(B) ≤ τ ·
OPT(A×B) for some constant τ then the following conjecture holds:

Conjecture 1. For anyα > 0, the MINIMUM RESET SEQUENCE problem has no polynomial-
time algorithm with approximation ratio α log n, where n is the total number of states,
unless P = NP.

This lower bound is stronger than the lower bounds for both SET COVER and SHORT-
EST COMMON SUPERSEQUENCE. However, showing that OPT(A) · OPT(B) ≤ τ ·
OPT(A×B) for some constant τ seems challenging because of the interaction between
A and B. More specifically, it is tempting to think that OPT(A) ·OPT(B) = OPT(A×
B), but this is not the case. Consider an SCS instance A = {ab, ba} and a SET COVER
instance B = (X, C) where X = {1, 2, 3, 4} and C = {{2, 3}, {1, 2, 4}, {1, 3, 4}}. An
optimal solution to A×B uses only fives symbols:

(B, {1, 2, 4}), (A, {2, 3}), (B, {1, 3, 4}), (A, {1, 3, 4}), (B, {1, 2, 4})

however OPT(A) = 3 (either aba or bab) and OPT(B) = 2 (since no subset contains
all 4 elements).
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