Question 1 (KT 7.7). Consider a set of mobile computing clients in a certain town who each need to be connected to one of several possible base stations. We'll suppose there are n clients, with the position of each client specified by its (x, y) coordinates in the plane. There are also k base stations; the position of each of these is specified by (x, y) coordinates as well.

For each client, we wish to connect it to exactly one of the base stations. Our choice of connections is constrained in the following ways.

- There is a range parameter r - a client can only be connected to a base station that is within distance r.
- There is a load parameter L — no more than L clients can be connected to any single base station.

Your goal is to design a polynomial time algorithm for the following problem. Given the positions of a set of clients and a set of base stations, as well as the range and load parameters, decide whether every client can be connected simultaneously to a base station, subject to the range and load conditions in the previous paragraph.

Note: Question 1 helps you think about solving problems using the mathematical machinery of flow networks. Notice that the problem is similar to the maximum bipartite matching problem we discussed in class: you want to match clients to base stations subject to some constraints. Hence, you will solve it by casting it into a maximum flow problem. You have two opportunities to be creative. First, you can play with network topology - that is the arrangement and connectivity of nodes in the network. Second, you can fiddle with edge capacities.

Question 2 (KT 7.5). Decide whether you think the following statement is true or false. If it is true, give a short explanation. If it is false, give a counterexample.

Let G be an arbitrary flow network, with a source s, a sink t, and a positive integer capacity c_{e} on every edge e; and let (A, B) be a minimum s-t cut with respect to these capacities $\left\{c_{e} \mid e \in E\right\}$. Now suppose we add 1 to every capacity; then (A, B) is still a minimum s-t cut with respect to these new capacities $\left\{1+c_{e} \mid e \in E\right\}$.
Question 3 (KT 7.23). Suppose you're looking at a flow network G with source s and sink t, and you want to be able to express something like the following intuitive notion: Some nodes are clearly on the "source side" of the main bottlenecks; some nodes are clearly on the "sink side" of the main bottlenecks; and some nodes are in the middle. However, G can have many minimum cuts, so we have to be careful in how we try making this idea precise. Here's one way to divide the nodes of G into three categories of this sort.

- We say a node v is upstream if, for all minimum s-t cuts (A, B), we have $v \in A$-that is, v lies on the source side of every minimum cut.
- We say a node v is downstream if, for all minimum s - t cuts (A, B), we have $v \in B$-that is, v lies on the sink side of every minimum cut.
- We say a node v is central if it is neither upstream nor downstream; there is at least one minimum s-t cut $\left(A^{\prime}, B^{\prime}\right)$ for which $v \in A$, and at least one minimum s-t cut $\left(A^{\prime}, B^{\prime}\right)$ for which $v \in B^{\prime}$.
Give an algorithm that takes a flow network G and classifies each of its nodes as being upstream, downstream, or central. The running time of your algorithm should be within a constant factor of the time required to compute a single maximum flow. Hint: think about running a BFS on the residual graph.

Question 4 (KT 7.24). Let $G=(V, E)$ be a directed graph with source $s \in V$, sink $t \in V$, and non-negative edge capacities $\left\{c_{e}\right\}$. Give a polynomial-time algorithm to decide whether G has a unique minimum s-t cut (i.e., an s-t cut of capacity strictly less than that of all other s - t cuts). Hint: Use your result from Question 3.
Question 5 (KT 7.51 (extra credit)). Some friends of yours have grown tired of the game "Six Degrees of Kevin Bacon" (after all, they ask, isn't it just breadth-first search?) and decide to invent a game with a little more punch, algorithmically speaking. Here's how it works.

You start with a set X of n actresses and a set Y of n actors, and two players P_{0} and P_{1}. Player P_{0} names an actress $x_{1} \in X$, player P_{1} names an actor y_{1} who has appeared in a movie with x_{1}, player P_{0} names an actress x_{2} who has appeared in a movie with y_{1}, and so on. Thus, P_{0} and P_{1} collectively generate a sequence $x_{1}, y_{1}, x_{2}, y_{2}, \ldots$ such that each actor/actress in the sequence has costarred with the actress/actor immediately preceding. A player $P_{i}(i=0,1)$ loses when it is P_{i} 's turn to move, and she cannot name a member of her set who hasn't been named before.

Suppose you are given a specific pair of such sets X and Y, with complete information on who has appeared in a movie with whom. A strategy for P_{i} in our setting is an algorithm that takes a current sequence $x_{1}, y_{1}, x_{2}, y_{2}, \ldots$ and generates a legal next move for P_{i} (assuming it's P_{i} 's turn to move). Give a polynomial time algorithm that, given some instance of the game, decides at the start of the the game which of the two players can force a win. Hint: think about this problem as a maximum bipartite matching problem. What happens when there is a perfect matching? What if there is not a perfect matching?

