
Williams College Homework 4 Brent Heeringa

Question 1 (JE). Describe and analyze a data structure that supports the following operations on an array A[1 . . . n]. Initially,
A[i] = 0 for all i.

• SET(i): Given an index i such that A[i] = 0, set A[i] to 1.

• GET(i): Given an index i, return A[i].

• SMALLEST(i): Given an index i, return the smallest index j ≥ i such that A[j] = 0, or report that no such index exists.

For full credit, SET and GET should run in worst-case constant time, and the amortized cost of SMALLEST should be equivalent
to the amortized cost of the UNION-FIND data structure. Here is some help: imagine using a UNION-FIND data structure to
represent maximal contiguous sets of 1s. The root element of each set may correspond to the smallest 0, but should know the
index of its smallest 0. That is, you may want to associate a field ZERO with each element, which only has meaning for the root
node. The implementation of SET requires the most care—it is natural to implement this operation as a UNION, which requires
two FIND operations. However, SET should only take O(1) time. Thus, you may want to consider adding an additional field,
LEFT, to each element, that records the leftmost 1 in each set. If the parent of the leftmost element is always the root, then it
might be possible to perform a SET in constant time.

Question 2 (DPV). Suppose you are choosing between the following three algorithms:

1. Algorithm A solves problems by dividing them into five subproblems of half the size, recursively solving each subproblem,
and then combining the solutions in linear time.

2. Algorithm B solves problems of size n by recursively solving two subproblems of size n − 1 and then combining the
solutions in constant time.

3. Algorithm C solves problems of size n by dividing them into nine subproblems of size n/3, recursively solving each
subproblem, and then combining the solutions in O(n2) time.

What are the running times of each of these algorithms (in asymptotic notation) and which would you choose?

Question 3 (DPV). An array A[1 . . . n] is said to have a majority element if more than half of its entries are the same. Given
an array , the task is to design an efficient algorithm to tell whether the array has a majority element, and, if so, to find that
element. The elements of the array are not necessarily from some ordered domain like the integers, and so there can be no
comparisons of the form A[i] > A[j]. You should think of the array elements as, say, JPEG files. However, you can answer
questions of the form: A[i] = A[j] in O(1) time.

(a) Show how to solve this problem in O(n log n) time. Make sure to prove that your algorithm is correct (via induction) and
give a recurrence relation for the running time of your algorithm. A hint for this problem is available at the end of the
homework.

(b) Can you give a linear-time algorithm? A hint for this problem is available at the end of the homework.

Question 4 (JE). An inversion in an array A[1 . . . n] is a pair of indices (i, j) such that i < j and A[i] > A[j]. The number of
inversions in an n-element array is between 0 (if the array is sorted) and

(
n
2

)
(if the array is sorted backward). Describe and

analyze an algorithm to count the number of inversions in an n-element array in O(n log n) time.

Question 5. I found this homework (a) challenging, but fun; (b) challenging, but not fun; (c) fun, but not challenging; (d) not
fun and not challenging.

Extra Credit
This question adapted from the Design and Analysis of Algorithms course at the University of Konstanz by Dr. Ulrik Brandes
and Dr. Sabine Cornelsen

Question 6 (Least Common Ancestor). Let T = (V,E) be an oriented tree with root r ∈ V and let P ⊆ {{u, v} |u, v ∈ V }
be a set of unordered pairs of vertices. For each v ∈ V let Πv = {r, ..., v} ⊆ V denote the sequence of vertices along the path
from r to v and let d(v) = |Πv| − 1 denote the depth of v ∈ T . The least common ancestor of pair {u, v} ∈ P is defined as
w ∈ V with w ∈ Πv ∩Πu and d(w) > d(w) for all w ∈ Πv ∩Πu.

LCA(r) traverses T to determine the least common ancestors of all pairs {u, v} ∈ P . At the beginning, all vertices are
unmarked.
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Algorithm 1: LCA(u)

1 Makeset (u)
2 ancestor[Find(u)]←− u
3 foreach child v of u in T do
4 LCA(v)
5 Union(Find(u),Find(v))
6 ancestor[Find(u)]←− u

7 end
8 mark u
9 foreach v with {u, v} ∈ P do

10 if v is marked then
11 print “LCA(” + u + “,” + v “) is” + ancestor[Find(v)]
12 end
13 end

(a) Show that, when Line 8 in LCA(u) is executed, the set FIND(U) contains all vertices of the subtree Tu ⊆ T with root u.
Hint: Do an induction on the height h(u) of u. (h(u) = 0 if u is a leaf)

(b) Show that the number of sets in the Union-Find data structure at the time of call LCA(v) equals d(v).
Hint: The recursive calls of LCA specify a traversing order of T which implies an order on V . Do an induction on the
position of v in this order.

(c) Prove that LCA(r) determines the least common ancestors of all {u, v} ∈ P correctly.
Hint: Differentiate the two cases: 1. w.l.o.g. v ∈ Tu and 2. v 6∈ Tu and u 6∈ Tv .

(d) Analyze the running time of LCA(r).

Hints
Hint for ?? (a) Split the array A into two arrays A1 and A2 of half the size. Does knowing the majority elements of A1 and

A2 help you figure out the majority element of A? If so, can you use a divide-and-conquer approach?

Hint for ?? (b) Arbitrarily pair up the elements of the array. For each pair, if the two elements are different, discard both of
them; if they are the same, keep just one of them. Show that after this procedure executes, there are at most n/2 elements
left, and that they have a majority element if A does.
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