
Williams College Homework 7 Brent Heeringa

You may work with a partner on this problem set. You need only turn in one solution. The multi-part problem has some
challenging parts. Please start early.

Question 1. Given an undirected, bipartite graph G = (V,E) where V = L ∪ R and all edges have exactly one endpoint
in L, let M be a matching in G. We say that a simple path P in G is an augmenting path with respect to M if it starts at an
unmatched vertex in L, ends at an unmatched vertex in R, and its edges belong alternately to E \M and M . (This definition
of an augmenting path mimics the idea of an augmenting path a flow network corresponding to the bipartite graph.) In this
problem, we treat a path as a sequence of edges, rather than as a sequence of vertices. A shortest augmenting path with respect
to a matching M is an augmenting path with a minimum number of edges.

Given two sets A and B, the symmetric difference A⊕B is defined as (A \B) ∪ (B \A), that is, the elements that are in
exactly one of the two sets.

(a) Show that if M is a matching and P is an augmenting path with respect to M , then the symmetric difference M ⊕P is a
matching and |M ⊕ P | = |M |+ 1. Show that if P1, P2, . . . , Pk are vertex-disjoint augmenting paths with respect to M ,
then the symmetric difference M ⊕ (P1 ∪ P2 ∪ · · · ∪ Pk) is a matching with cardinality |M |+ k.

The general structure of our algorithm is the following:

Algorithm 1 Hopcroft-Karp(G)

Require: A bipartite graph G

1: M ← ∅
2: repeat
3: P ← {P1, P2, . . . , Pk} be a maximal set of vertex-disjoint shortest augmenting paths with respect to M
4: M ←M ⊕ {P1 ∪ P2 ∪ · · · ∪ Pk}
5: until P = ∅
6: return M

Note that a maximal set is one that cannot be extended, so a maximal set of vertex-disjoint shortest augmenting paths with
respect to M is one in which there are no more augmenting paths which can be added to M and keep it vertex-disjoint. The
remainder of this problem asks you to analyze the number of iterations in the algorithm (that is, the number of iterations in the
repeat loop) and to describe an implementation of line 3.

(b) Given two matchings M and M∗ in G, show that every vertex in the graph G′ = (V,M ⊕M∗) has degree at most
2. Conclude that G′ is a disjoint union of simple paths or cycles. Argue that edges in each such simple path or cycle
belong alternately to M or M∗. Prove that if |M | ≤ |M∗|, then M ⊕M∗ contains at least |M∗| − |M | vertex-disjoint
augmenting paths with respect to M .

Let l be the length of a shortest augmenting path with respect to a matching M , and let P1, P2, . . . , Pk be a maximal set of
vertex-disjoint augmenting paths of length l with respect to M . Let M ′ = M ⊕ (P1 ∪ P2 ∪ · · · ∪ Pk), and suppose that P is a
shortest augmenting path with respect to M ′.

(c) Show that if P is vertex-disjoint from P1, P2, . . . , Pk, then P has more than l edges.

(d) Now suppose that P is not vertex-disjoint from P1, P2, . . . , Pk. Let A be the set of edges (M ⊕M ′) ⊕ P . Show that
A = (P1 ∪ P2 ∪ · · · ∪ Pk)⊕ P and that |A| ≥ (k + 1)l. Finally, show that P has more than l edges by arguing that P
must not only share a node with P1, P2, . . . , Pk, but, in fact, an edge.

(e) Prove that if a shortest augmenting path for M has length l, the size of the maximum matching is at most |M |+|V |/(l+1).

(f) Show that the number of repeat loop iterations in the algorithm is at most 2
√
n. (Hint: By how much can M grow after

iteration number
√
n?)

(g) Give an algorithm that runs in O(m) time to find a maximal set of vertex-disjoint shortest augmenting paths P1, P2, . . . , Pk

for a given matching M . As a hint, think about a breadth-first search that labels each node as either EVEN or ODD
depending on when it is encountered. Conclude that the total running time of HOPCROFT-KARP is O(

√
nm).

Question 2 (extra-credit). Implement Hopcraft-Karp and show empirically that it runs in O(
√
nm) time.
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