
Lecture 28: Reg Ex Problems

Hexadecimal Colors

Write a regular expression to match a hexadecimal color value in a piece of text. A
hexadecimal color value is a 6 character sequence where each character is a
hexadecimal digit (i.e. between 0 and f) preceded by an optional #. For example
#ff34d5 is valid but #h56732 is not. Make sure to group the actual hex number for
ease-of-use.

#?({0-9a-f}{6})

Hexadecimal Colors

Write a regular expression to match a hexadecimal color value in a piece of text. A
hexadecimal color value is a 6 character sequence where each character is a
hexadecimal digit (i.e. between 0 and f) preceded by an optional #. For example
#ff34d5 is valid but #h56732 is not. Make sure to group the actual hex number for
ease-of-use.

#?({0-9a-f}{6})

IP Addresses

IP addresses are strings of four numbers, delimited by a period, where each number is
in the range [0, 255]. For example, the IP address of this computer is 137.165.206.66.
The IP address for the Google Domain Name Server is 8.8.8.8, which can also be
written as 8.08.008.8. Write a regular expression to check if some text is exactly an IP
address. That is, do IP address validation.

^(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?\.){3}(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)$

And here’s a way to programmatically create the regular expression:

ips = []

for i in range(256):

if (i < 10):

ips.append(str(i).zfill(2))

if (i < 100):

ips.append(str(i).zfill(3))

ips.append(str(i))

regexips ="^(({0})\\.){{3}}({0})$".format("|".join(num for num in ips))

IP Addresses

IP addresses are strings of four numbers, delimited by a period, where each number is
in the range [0, 255]. For example, the IP address of this computer is 137.165.206.66.
The IP address for the Google Domain Name Server is 8.8.8.8, which can also be
written as 8.08.008.8. Write a regular expression to check if some text is exactly an IP
address. That is, do IP address validation.

^(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?\.){3}(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)$

And here’s a way to programmatically create the regular expression:

ips = []

for i in range(256):

if (i < 10):

ips.append(str(i).zfill(2))

if (i < 100):

ips.append(str(i).zfill(3))

ips.append(str(i))

regexips ="^(({0})\\.){{3}}({0})$".format("|".join(num for num in ips))

IP Addresses

IP addresses are strings of four numbers, delimited by a period, where each number is
in the range [0, 255]. For example, the IP address of this computer is 137.165.206.66.
The IP address for the Google Domain Name Server is 8.8.8.8, which can also be
written as 8.08.008.8. Write a regular expression to check if some text is exactly an IP
address. That is, do IP address validation.

^(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?\.){3}(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)$

And here’s a way to programmatically create the regular expression:

ips = []

for i in range(256):

if (i < 10):

ips.append(str(i).zfill(2))

if (i < 100):

ips.append(str(i).zfill(3))

ips.append(str(i))

regexips ="^(({0})\\.){{3}}({0})$".format("|".join(num for num in ips))

Email Addresses

Write a regular expression to check whether some given text is a valid email address.
A valid email address may contain the characters ., %, +, and -. Suppose, incorrectly,
that all email addresses must end with a a 2-4 character string.

^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,4}$

Email Addresses

Write a regular expression to check whether some given text is a valid email address.
A valid email address may contain the characters ., %, +, and -. Suppose, incorrectly,
that all email addresses must end with a a 2-4 character string.

^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,4}$

