
Lecture 19: Review of iterators, classes, and object-oriented programming



Iterators

Recall that something is iterable if it supports the iter function—that is the method
iter is defined—and returns an iterator. An iterator is something that

supports the next function—that is, the method next is defined;

throws a StopIteration when the iterator is empty; and

returns itself under an iter call.

Iterators may be defined using classes or with generators.



An Iterator for Squares

1 class squares:
2
3 def init (self, threshold=None):
4 self. state = 1
5 self. threshold = threshold
6
7 def below threshold(self):
8 return self. threshold is None or self. state∗∗2 < self. threshold
9

10 def iter (self):
11 return self
12
13 def next (self):
14 if self. below threshold():
15 sq = self. state∗∗2
16 self. state += 1
17 return sq
18 else:
19 raise StopIteration()



A Generator for Squares

1 def squares gen(threshold=None):
2 i = 1
3 while threshold is None or i∗∗2 < threshold:
4 yield i∗∗2
5 i += 1



Review of Object-Oriented Programming in Python

Without getting too technical, the primary characteristics associated with
object-oriented programming are

inheritance;

encapsulation; and

polymorphism



Inheritance

class Shape:

class Rectangle(Shape):

class Square(Rectangle):



Encapsulation

class Shape:

class Rectangle(Shape):

def init (self, width, height):
self. width = width
self. height = height



Polymorphism

class Shape:
def area():
pass

class Rectangle(Shape):

def area():
return self. width ∗ self. height

class Square(Rectangle)

def init (self, side):
super(). init (side, side)

>>> shape = Rectangle(10,20)

>>> shape.area()

200

>>> shape = Square(10)

>>> shape.area()

100



An Iterator for Even Squares

1 class even squares(squares)
2
3 def next (self):
4 sq = next(super())
5 while (sq % 2 != 0):
6 sq = next(super())
7 return sq


