Lecture 19: Review of iterators, classes, and object-oriented programming



Iterators

Recall that something is iterable if it supports the iter function—that is the method
__iter__ is defined—and returns an iterator. An iterator is something that

@ supports the next function—that is, the method __next__ is defined;
o throws a StopIteration when the iterator is empty; and
o returns itself under an iter call.

Iterators may be defined using classes or with generators.



An lterator for Squares

1 | class squares:
2
3 def __init__(self, threshold=None):
4 self. _state = 1
5 self._threshold = threshold
6
7 def _below_threshold(self):
8 return self._threshold is None or self._statexx2 < self._threshold
9
10 def __iter__(self):
11 return self
12
13 def __next__(self):
14 if self._below_threshold():
15 sq = self._statex*2
16 self._state +=1
17 return sq
18 else:
19 raise Stoplteration()




A Generator for Squares

def squares_gen(threshold=None):
i=1
while threshold is None or ix*2 < threshold:
yield ix%2
i+=1

GO WN =




Review of Object-Oriented Programming in Python

Without getting too technical, the primary characteristics associated with
object-oriented programming are

@ inheritance;
@ encapsulation; and

@ polymorphism



Inheritance

class Shape:
class Rectangle(Shape):

class Square(Rectangle):




Encapsulation

class Shape:
class Rectangle(Shape):
def __init__(self, width, height):

self._width = width
self._height = height




Polymorphism

class Shape:
def area():
pass
class Rectangle(Shape):

def area():
return self._width * self._height

class Square(Rectangle)

def __init__(self, side):
super()._-init__(side, side)

>>> shape = Rectangle(10,20)
>>> shape.area()

200

>>> shape = Square(10)

>>> shape.area()

100



An lterator for Even Squares

class even_squares(squares)

def __next__(self):
sq = next(super())
while (sq % 2 = 0):
sq = next(super())
return sq

~NOoO O~ WN -




