
Williams College Lecture 32 Brent Heeringa

Sorting Big Data

Defining Big Data is somewhat difficult, but usually it refers to data-centric problems where traditional solutions
become infeasible because of the sheer volume of data. Let’s imagine a scenario where the amount of data we need
to sort is approximately 100x the amount of available main memory. How do we sort the data if we cannot hold it
all in memory?

Here’s the main ideas:

• Partition the data into B files such that all the data in a file can be stored in main memory; we can accomplish
this by streaming through the data and writing to temporary files until the surpass a given size threshold.

• Sequentially load each file into memory, sort it, and save it.

• Sequentially combine the files by streaming over a pair and merging them into a new single file. Delete the
pair and repeat until there is only a single file left.

Here is a merge iterator that uses very little space.

1 def merge iter(iter1, iter2):
2 try:
3 val1 = next(iter1)
4 val2 = next(iter2)
5 while True:
6 if val1 < val2:
7 yield val1
8 val1 = next(iter1)
9 else:

10 yield val2
11 val2 = next(iter2)
12
13 except StopIteration:
14 # one of the two iterators is empty, but we don’t know which, so
15 # just yield all the remaining values in both (the one without
16 # any remaining values won’t yield anything
17 for val in iter1:
18 yield val
19 for val in iter2:
20 yield val

Spring Semester 2015 1 CS 135: Diving into the Deluge of Data



Williams College Lecture 32 Brent Heeringa

1 def bigsort(input, output, size=2∗20):
2
3 def split(file, size):
4 open files = []
5 with open(file) as fin:
6 tmp = tempfile.TemporaryFile(’w+t’)
7 for line in fin:
8 if os.fstat(tmp.fileno()).st size < size:
9 print(line,file=tmp,end=””)

10 else:
11 tmp.flush()
12 tmp.seek(0)
13 open files.append(tmp)
14 tmp = tempfile.TemporaryFile(’w+t’)
15 print(line,file=tmp,end=””)
16
17 tmp.flush()
18 tmp.seek(0)
19 open files.append(tmp)
20
21 return open files
22
23 def sort files(files):
24
25 sorted files = []
26
27 for file in files:
28 contents = [line for line in file]
29 contents.sort()
30 tmp = tempfile.TemporaryFile(’w+t’)
31 for line in contents:
32 print(line, file=tmp, end=””)
33 tmp.flush()
34 tmp.seek(0)
35 sorted files.append(tmp)
36 file.close()
37
38 return sorted files
39
40 def merge files(files, final):
41
42 tmp = files[0]
43 for file in files[1:]:
44 tmp2 = tempfile.TemporaryFile(’w+t’)
45 for line in merge iter(tmp, file):
46 print(line,file=tmp2,end=””)
47 tmp.close()
48 tmp = tmp2
49 tmp.flush()
50 tmp.seek(0)
51
52 with open(final, ’w+t’) as fout:
53 for line in tmp:
54 print(line,end=’’,file=fout)
55
56 merge files(sort files(split(input, size)), output)

Spring Semester 2015 2 CS 135: Diving into the Deluge of Data


