
Williams College Lecture 19 Brent Heeringa

Review of Iterators

Recall that something is iterable if it supports the iter function—that is the method iter is defined—and
returns an iterator. An iterator is something that

• supports the next function—that is, the method next is defined;

• throws a StopIteration when the iterator is empty; and

• returns itself under an iter call.

Iterators may be defined using classes or with generators. For example, suppose we want an iterator that generates
all squares below a certain threshold. We could define the following squares class.

1 class squares:
2
3 def init (self, threshold=None):
4 self. state = 1
5 self. threshold = threshold
6
7 def below threshold(self):
8 return self. threshold is None or self. state∗∗2 < self. threshold
9

10 def iter (self):
11 return self
12
13 def next (self):
14 if self. below threshold():
15 sq = self. state∗∗2
16 self. state += 1
17 return sq
18 else:
19 raise StopIteration()

Some specific points:

• We use the optional parameter threshold=None to allow for infinite generation. This convention of setting
the value to None is common in Python.

• The iter method returns self

• The below threshold method makes use of a short-circuited logical or operator. Short-circuited means
that the expressions are evaluated left-to-right and if the whole expression can be inferred without evaluating
any more expressions, then evaluation is complete. In this case, if self. threshold is None then the
right-hand side is never evaluated, which is good because you can’t compare an integer to None.

• The next method raises a StopIteration using the raise syntax.

Spring Semester 2015 1 CS 135: Diving into the Deluge of Data



Williams College Lecture 19 Brent Heeringa

We could also define the following generator.

1 def squares gen(threshold=None):
2 i = 1
3 while threshold is None or i∗∗2 < threshold:
4 yield i∗∗2
5 i += 1

Class Exercise: Powers of k

Define an iterator for powers of k with an optional second argument length argument specifying how many of the
first k powers to generate)

1 def powers of(k, length=None):
2 i = 0
3 while length is None or i < length:
4 yield k∗∗i
5 i += 1

Inheritance and Overriding Methods

Without getting too technical, the primary characteristics associated with object-oriented programming are

• inheritance;

• encapsulation; and

• polymorphism

Inheritance is a mechanism by which a class retains the state and behavior of another class. Encapsulation is
about creating a public interface for your class and keeping the internal state sequestered. Polymorphism just means
that a class is free to override a method from its base class and that the correct version of the method always gets
called. In python, there is direct support for inheritance, encapsulation happens via naming conventions, and poly-
morphism happens by default—the most specific version of a method is always called, but one can use super() to
refer to the super class.

Example: Even Squares

Imagine that you wanted to create an iterator that returned squares that were even. One way to do this is to create
a new even squares class that inherits from squares. Without any new methods, the even squares class
inherits the behavior of squares as is. However, when next is called, we only want even squares returned. To do
this, we override the the next method so that it calls the next method of its superclass until it reaches an even
square.

1 class even squares(squares)
2
3 def next (self):
4 sq = super(). next ()
5 while (sq % 2 != 0):
6 sq = next(super())
7 return sq

Spring Semester 2015 2 CS 135: Diving into the Deluge of Data


