
Williams College Lecture 8 Brent Heeringa

1 Searching

A fundamental operation in computer science in search.

Linear Search

Suppose we have a list of strings

l = ["The Strokes", "Bon Iver", "Arcade Fire", "The Black Keys",
"Pixies", "The White Stripes", "Neutral Milk Hotel",
"The National", "Yo La Tengo"]

and we want to be able to find a string in the list the begins with a certain prefix. Call this function

find_startswith(last,searchstr)

and consider it’s natural definition below:

1 def find startswith(lst,searchstr):
2 for s in lst:
3 if s.startswith(searchstr):
4 return s
5 return None

Question 1. In the worst case, if lst has n elements, how many elements will find startswith examine?

Binary Search

Now suppose that the list of bands were sorted lexicographically by name. Lexicographically just means al-
phabetically. We can search through this sorted list much more efficiently. Consider the following version of
find startswith that performs what computer scientists call a binary search on the list.

1 def find startswith(lst, searchstr):
2 low = 0
3 high = len(lst)−1
4 while (low < high):
5 mid = (high + low) // 2
6 if lst[mid].startswith(searchstr):
7 return lst[mid]
8 elif lst[mid] < searchstr:
9 low = mid+1

10 else:
11 high = mid−1
12 return None

Question 2. In the worst case, if lst has n elements, how many elements will find startswith examine?

Spring Semester 2015 1 CS 135: Diving into the Deluge of Data



Williams College Lecture 8 Brent Heeringa

Approximating Roots

How do we calculate the square root of a number x? In this section we’ll develop two algorithms to calculate
√
x—

one based on binary search and another based on tangent approximations, which is often called Newton’s Method.

Bisection Method

Let x be a non-negative real number. Searching for
√
x can be viewed as a search on the real number line between

(0, x) where, with each iteration, we can eliminate half of the remaining candidate square roots. Here we start with
low=0 and high=x and choose the midpoint m=(low+high)/2 as our candidate square root value. If this value
is larger than the actual square root, we can use it as our new high value; if it’s smaller, we can use it as our lower
value.

1 def sqrt bisect(x, error=0.00001):
2 low = 0
3 high = x
4 m = (low + high)/2
5 while (abs(m∗∗2 − x) > error):
6 if (m∗∗2 < x):
7 low = m
8 else:
9 high = m

10 m = (low + high)/2
11 return m

Newton’s Method

Let f(x) be a well-defined function (think continuous) with root f . This means f(r) = 0. Newton’s method finds
successive approximations of the root by using a linear approximation. Here’s the idea. Suppose that x0 is an
estimate of r. This means that r = x0 + ε where ε is some small error.

0 = f(r) = f(x0 + ε) ≈ f(x0) + εf ′(x0)

by the first order terms of the Taylor expansion. The equation y = f(x0) + εf ′(x0) is also the tangent line to f(x)
at (x0, f(x0)). Setting this equal to 0 and solving for ε gives

ε =
−f(x0)
f ′(x0)

.

But r = x0 − ε so

r ≈ x0 −
f(x0)

f ′(x0)
.

This estimate of r becomes our new estimate x1 and we repeat the process resulting in a (hopefully) better and better
approximation so that at iteration n+ 1 we have

xn+1 ≈ xn −
f(xn)

f ′(xn)
.

This method works perfectly well for complex numbers too.

Square Root

If we want to find the square root of y then using Newton’s method to solve f(x) = x2 − y leads to an appropriate
solution.

Spring Semester 2015 2 CS 135: Diving into the Deluge of Data


