
Williams College Lecture 1 Brent Heeringa

Computing is the art and science of solving problems. If mathematics provides a language to declarative knowl-
edge then computing provides a language to imperative knowledge.

It is about the how as opposed to the what.
This course will focus on solving problems using paper, pencils, and the programming language Python. Our

playground will be applications in scientific computing, text and image processing, social network data, databases,
and the World Wide Web. We will begin by exploring basic control structures like conditional statements, iteration
and recursion, and methods of abstraction like functions and types—the building blocks of procedural language. We
then shift our focus to data structures—lists, arrays, dictionaries, streams—and algorithms—searching, sorting—to
efficiently represent and manipulate data (or, if you will, information).

This course has several core tenets:

• Computing and computers are not magical.

• Computing, its tools, and its ideas are accessible to everyone provided they work hard and have an open mind.

• Programming requires practice; programming well requires significant practice.

• Computer science provides a language in which to think about and describe problems and their solutions; that
language has practical import almost everywhere.

Course Structure

lectures a mixture of cool topics in computing and specific programming constructs in Python, delivered with
interaction in mind, combined with a healthy dose of small group problem-solving in the classroom.

labs labs will focus on data-driven applications with a goal of reinforcing the core concepts in computing discussed
in class; techniques and material that extend the lecture topics in (usually) novel ways.

tools and workflow one goal of the course is to introduce and enforce modern development workflows—best prac-
tices that are followed outside of college and mimic those performed by seasoned programmers, data analysts
and researchers. To this end, we will use ¡tt¿git¡/tt¿ for source code control, lab distribution and lab collection
and ¡tt¿virtualenv¡/tt¿ and ¡tt¿pip¡/tt¿ for library isolation and project-specific packages. Our default editor
will be Atom, but this is not a requirement. The most important thing to is learn about your editor, its power,
its limitations and to experiment with it actively!

Practice: Thinking like a Computer Scientist

This activity is about writing and following directions. In one role, the students are programmers; in another, they
are the computer. This exercise is meant to make clear the necessary preciseness with which computing operates,
both in description and execution.

1. Break up into groups of 3-4 people.

2. Choose some spot in the science building as a secret destination. Choose a place that is not universally
known—some place for which the directions “Go to X” don’t necessarily work.

3. Write directions from TCL 206 to this place such that someone can find it reasonably efficiently.

4. Trade directions with another team; follow their directions; on a piece of paper, write down where you ended
up or where you felt sufficiently ambiguous about where to go that you were stuck; fold your paper in half and
don’t show it to anyone.

5. Repeat this a few times.

Spring Semester 2015 1 CS 135: Diving into the Deluge of Data


