Analysis Techniques to
Detect Concurrency Errors
(part 2)

Cormac Flanagan
UC Santa Cruz

Stephen Freund
Williams College

Student Contributors

« Jaeheon Yi, UC Santa Cruz (now at Google)

« Caitlin Sadowski, UC Santa Cruz (now at Google)

« Tom Austin, UC Santa Cruz (now at San Jose State)
« Tim Disney, UC Santa Cruz

« Ben Wood, Williams College (now at Wellesley College)

« Diogenes Nunez, Williams College (now at Tufts)

« Antal Spector-Zabusky, Williams College (now at UPenn)
« James Wilcox, Williams College (now at UW)

« Parker Finch, Williams College

« Emma Harrington, Williams College

Multithreading and Multicore CPUs

* Multithreaded programming is here. And difficult.
- schedule-dependent behavior
- race conditions, deadlocks, atomicity violations, ...
- difficult to detect, reproduce, or eliminate

Controlling Thread Interference

Static Techniques:
* Types for Race Detection
* Types for Atomicity

..‘ % r.
= R R S (e B Dynamic Techniques:
= B ik | » Data Races
H « Atomicity / Serializability
. Cooperative Concurrency

RoadRunner Framework for Dyanamic Concurrency Analyses
[PASTE 10, github]

e I
Standard JVM
RoadRunner
(Tool API
Ins.rr,umen.red :l Moni"'(abstract class Tool {
B 1_ d void create (NewThreadEvent e)
y ecode void acquire (AcquireEvent e)
/— 4 void release (ReleaseEvent e)
void access (AccessEvent e)
ﬁ Ahstracty | -
}
E class Copper extends Tool {
Instrumenter N - handlers for synchronization / access events
- data to store about program state
}

N alin Y,
|

Java Er'r'Ol": ceo

Bytecode

Others: Sofya [KDR 07], CalFuzzer [JNPS 09]

Controlling Thread Interference

Static Techniques:
* Types for Race Detection
 Types for Atomicity

5] R Dynamic Techniques:
B i * Data Races

| H « Atomicity / Serializability
. Cooperative Concurrency

Multiple Threads Single Thread

1S a :cfr-nlrc-xl’;omic x+ +

read-modify-write

x = 0; x =0,

thread interference?

while (x < len) { while (x < len) {
thread interference?
tmp = a[x]; tmp = a[x];
thread interference?
b[x] = tmp; b[x] = tmp;
thread interference?

X++; X++;
thread interference?

Controlling Thread Interference:
#1 Manually

X 0;
thread interference?
while (x < len) {
thread interference?
tmp = a[x];
thread interference?
b[x] = tmp;
thread interference?

X++;

thread interference?

}

1 Tnspect code

2 Identify where
interference
does not occur

—D

x = 0;

while (x < len)

thread interference?

tmp = a[x];

thread interference?
b[x] = tmp;
X++;

Controlling Thread Interference:
#1 Manually w/ "Productivity Heuristic"

1 Assume no
x =0; . x =0;
thread interference? lnTerference
while (x < len) { while (x < len) {
thread interference? .
tmp = a[x]; 2 USZ SequenTlal tmp = a[x];
thread interference? 1
blx] = tmp; reasoning blx] = tmp;
thread interference? —>
X++; X++;
thread interference?
} }

« Works some of the time, but subtle bugs...

Controlling Thread Interference:
#2 Enforce Race Freedom

 Race Conditions
two concurrent unsynchronized accesses, at least

ohe write
Thread A
= bal: / Thread A Thread B \
bal = t1 + 10;
tl = bal
bal = t1 + 10
Thread B £2 = bal
t2 = bal; bal = t2 - 10

bal = t2 - 10; k /

Controlling Thread Interference:
#2 Enforce Race Freedom

 Race Conditions
two concurrent unsynchronized accesses, at least

ohe write

Thread A

éi}=bal; //7Thread A Thread B ‘\\

bal = t1 + 10;

tl = bal
t2 = bal

EECSCRE bal = t1 + 10

t2 = bal; bal = t2 - 10

bal = t2 - 10; k /

Controlling Thread Interference:
#2 Enforce Race Freedom

 Race Conditions

two concurrent unsynchronized accesses, at
least one write

* Races are correlated to defects

 Race-freedom ensures sequentially-consistent
behavior

— even on relaxed memory models

« But...

Controlling Thread Interference:

#2 Enforce Race Freedom

Thread A

acq(m) ;
tl = bal;
rel (m) ;

acq(m) ;
bal = t1 + 10;
rel (m) ;

Thread B

acq(m) ;
bal = 0
rel (m) ;

-

Thread B <\\

Thread A

acq (m)

tl = bal

rel (m)
acq (m)
bal = 0
rel (m)

acq (m)

bal = t1 + 10

rel (m)

o

Controlling Thread Interference:
#3 Enforce Atomicity

Atomic method must behave as if it executed serially,
without interleaved operations of other thread

void copy () {
x = 0;
thread interference?

while (x < len) {
thread interference?
tmp = a[x];
thread interference?
b[x] = tmp;
thread interference?

X++;

thread interference?

Controlling Thread Interference:
#3 Enforce Atomicity

Atomic method must behave as if it executed serially,
without interleaved operations of other thread

atomic void copy () {

}

x =0;
while (x < len) | * Can use ;quen‘rual |
tmp = a[x]; reasoning in atomic
methods
b[x] = tmp;

xrE e 90% of methods
)

Bohr: Static Analysis for Atomicity

class A {
int x
guarded by this;

atomic void m() {
synchronized ..

}

b

i Bohr k

v

&

N

X

Method
not

atomic

- /
» Extension of Java's type system [TOPLAS'08]

 Input: Java code with
— atomicity annotations
— annotations describing protecting lock for fields

* Theorem: In any well-typed program, all paths
through atomic methods are serializable

Theory of Reduction [Lipton 76]

acquire (m) . ..

.. >< acquire (m) acquire (m)

tl = bal tl = bal tl = bal
><ba1=t1+10 bal = t1 + 10
bal = t1 + 10 .. >< release (m)
release (m) release (m) : ...

R Right-mover Acquire

L Left-mover Release

M Both-mover Race-Free Access

N Non-mover Racy Access

Serializable blocks have the pattern: R* [N] L*

Examples

void deposit(int n)
synchronlzed(m) {
= bal;

tl + n-
M

tl
bal

}

R

)

acquire (m)

L

acquire (m)

tl = bal

tl = bal

bal = t1 + n

bal = t1 + n

release (m)

~
e
/

release (m)

(R* [N]L*)

Examples

void deposit(int n) {
synchronized (m) {
tl = bal;

bal = t1 + n;
} \/
}

acquire (m)

acquire (m)

tl = bal

tl = bal

bal = t1 + n

release (m)

~.
bal = £1 +n7

release (m)

void deposit(int n)

synchronized (m) M
tl = bal; L
} L |

synchronized (m) {<{R
bal = tl1 + n;

}

—]

\%
acquire (m) L'

tl = bal

R
M

release (m)

X

acquire (m)

Y.V

bal = t1 + n

M

release (m)

(R*[N] L*)

Dynamic Analysis for Atomicity

* Atomizer [POPL'04]
— based on reduction, abstracts ops as R/L/M/N
— leads to false alarms

« Other techniques: [Wang-Stoller 06], [Xu-Bodik-Hill
06], [Hatcliff et al. 04], [Park-Lu-Zhou 09]

« Velodrome [PLDI 08]

— reason about serializability via happens-before
relation

— precise for observed trace, no false alarms

int x = 0;
volatile int b = 1;

Thread A

while (true) {
loop until b == 1;
atomic {
x =x + 100;
b =2;

}

Thread B
while (true) {

loop until b == 2;

atomic {
Xx =x - 100;
b=1;

Thread i accesses x
only when b == i

Execution
Trace

Thread A
while (true) {

loop until b ==

atomic {

x =x + 100;

b= 2;

}

Thread B
while (true) {

loop until b ==

atomic {

x =x - 100;

b=1;

°
4

°
14

atomic {

test b ==

tl = x

x =t1 + 100

b =2

test b == 2

test b ==

atomic {

test b == 1

t2 = x

x = t2 - 100

o
I
=

test b == 1

atomic {

tl = x

x = t1 + 100

b=2

test b ==

atomic {

t2 = x

x = t2 - 100

Happens-Before
Ordering on
Operations

* program order

atomic {

test b ==

tl = x

x =t1 + 100

v

test b == 2

test b ==

atomic {

test b == 1

t2 = x

A 4

A 4

x = t2 - 100

test b == 1

atomic {

tl = x

x = t1 + 100

b=2

A 4

test b ==

atomic {

t2 = x

x = t2 - 100

Happens-Before
Ordering on
Operations

* program order

* synchronization order

atomic {

tl = x

tl + 100

v

test b == 1

A 4

test b == 1

atomic {

tl = x

x = t1 + 100

b=2

test b

test b

test b

atomic {

t2 = x

A 4

t2 - 100

%
I

o
il
=

A 4

/

test b ==

atomic {

t2 = x

x = t2 - 100

Happens-Before
Ordering on
Operations

* program order

* synchronization order

e communication order

test b ==

atomic {

tl = x

x =t1 + 100

v

test b == 2

test b ==

atomic {

t2 = x

test b == 1

A 4

A 4

t2 - 100

%
I

o
il
=

test b == 1

atomic {

tl = x

x = t1 + 100

b=2

A 4

test b ==

atomic {

t2 = x

x = t2 - 100

Transactional
Happens-Before
Ordering

Theorem
Transactional HB order
has no cycles
if and only if
Trace is serializable

atomic {
tl = x
x = tl1l + 100

test b == 1

A\ 4

test b == 1

Y

atomic {
tl = x
x =t1 + 100
b =2

NNV E RN

test b ==

A 4

test b ==

A 4

test b ==

A\ 4

atomic {
t2 = x

= t2 - 100
=1

o X
(||

test b ==

atomic {
t2 = x
x = t2 - 100

Equivalent

Serial
Trace

test b ==

v

atomic {
tl = x
x = tl1l + 100
b =2

test b ==

test b ==1

\ 4

atomic {
tl = x
x = t1 + 100
b =2

SN\ /7NN

A\ 4

test b ==

L

atomic {
t2 = x
v — +9 — 100

Equivalent

Serial
Trace

test b ==

v

atomic {
tl = x
tl + 100

%
i

test b ==

test b ==

test b ==

test b == 1

atomic {

t2 = x
t2 - 100
1

X
b

A

atomic {
tl = x
x = t1 + 100
b =2

N\

test b ==

b

atomic {
t2 = x
v — +9 — 100

e o atomic {
Atomicity
Violation 0T \
Thread A FesE B =
while (true) _{ atomic "{
x loop untilIb == 2| £2 = x
atomic { test b ==
X = X ‘I' 100; v
b = 2; atomic {
} tl = x
} x = t1 + 100
b =2
Thread B)
while (true) { x =tz - 100
loop until b == 2; e =t
atomic { }
; = >1‘ - 100; Cycle in transactional HB order

= frace is not serializable
= report atomicity violation

Controlling Thread Interference:
#3 Enforce Atomicity

Atomic method must behave as if it executed serially,
without interleaved operations of other thread

atomic void copy () {

}

x =0;
while (x < len) | * Can use ;quen‘rual |
tmp = a[x]; reasoning in atomic
methods
b[x] = tmp;

xrE e 90% of methods
)

Controlling Thread Interference:
#3 Enforce Atomicity

Atomic method must behave as if it executed serially,
without interleaved operations of other thread

void busy wait() {

* 10% of methods acq(m) ;
thread interference?
while ('test()) {
. . thread interference?
* No information about rel (m) ;
. thread interference?
thread interference meo (m) -
thread interference?
. X++;
° LOCGI Cl'|'0m|C blOCkS thread interference?

awkward)

Controlling Thread Interference:
#3 Enforce Atomicity

Atomic method must behave as if it executed serially,
without interleaved operations of other thread

atomic void copy () { void busy wait() {
x = 0; acq(m) ;
thread interference?
while (x < len) { while ('test()) {
thread interference?
tmp = a[x]; rel (m) ;
thread interference?
bx] = tmp; acq(m) ;

//* \\\ thread interference?
xX++; \ Bimodal Semantics /’ X e rerencan
VS. //

read-modify-write)

_

Controlling Thread Interference:
#4 Cooperative Multitasking

 Cooperative scheduler
performs context switches
only at yield statements

e Clean semantics

— Sequential reasoning valid
by default ...

— ... except where yields
highlight thread interference

 Limitation: Uses only a single processor

yield

yield

yield

yield

Yield-Oriented
Concurrency
Cooperative Scheduler Preemptive Scheduler
) : acq (m)
« Sequential Reasoning % = 0 * Full performance
* Except at yields = Gl * No overhead
acq (m) yield
o=l acq (m
rel (m) % 2(0)
yield a) rel (m) ...
“ o Ylelds mar‘k yield barrier
barrier all interference yield
yield . yield acq(m)
points y x = 2
yield /é rel (m)
acq (m yield
x :(2) YIeld \
rel (m)
i Correctness
Cooperative /\ \l/\ > Preemptive
Correctness V 4 \ Correctness

|~ o

Benefits of Yield over Atomic

« Atomic methods are those with no yields

atomic void copy () { void busy wait() {
x = 0; acq(m) ;
thread interference?
while (x < len) { while ('test()) {
thread interference?
tmp = a[x]; rel (m) ;
thread interference?
b[x] = tmp; acq(m) ;
thread interference?
xX++; x++;
thread interference?
} }
} }

Benefits of Yield over Atomic

« Atomic methods are those with no yields

atomic void copy () {
x = 0;

while (x < len) {

tmp = a[x];
b[x] = tmp;
X++;

}
}

 atomic is a method-
« yield is acode-leve

evel spec.
spec.

void busy wait() {
acq(m) ;

while ('test()) {

rel (m) ;
yield;
acq(m) ;

X++;

Benefits of Yield over Atomic

atomic void copy () { void busy wait() {
x = 0; acq(m) ;
while (x < len) { while ('test()) {
tmp = al[x]; rel (m) ;
yield;
blx] = tmp; acq(m) ;
X++; [N |
— x++ is always ——
} an increment }
} operation }
)

Non-Interference Design Space

Non-Interference Specification

o+

S atomic yield

E [

S i . ield-

< delT|o+nal YME| atomicity, oZien'red
e lvsi serializability :
Lﬁ analysis programming
3 hewrun-time | transactional aunT\:.).leUC(‘]TC
= ystemns memory exclusion

Transactional Memory, Larus & Rajwar, 2007
Automatic mutual exclusion, Isard & Birrell, HOTOS '07

Multiple Threads Single Thread

1S a :;rtc-xl’;omic x+ +

read-modify-write

x = 0; x =0,

while (x < len) { while (x < len) {
thread interference?
tmp = a[x]; tmp = a[x];
thread interference?
b[x] = tmp; b[x] = tmp;
thread interference?
X++; X++;
thread interference?

} }

Yield-Oriented ,
Programming Single Thread

{ 1nt t=x;
X++ vs. vield; X++
x=t+1l; }

x =0; x = 0;

Whi;ie](.z-< len) { while (x < len) {
tmp = a[x]; tmp = a[x];
yield;

b[x] = tmp; blxl = tmp;
X++; X++;
} }

Yield-Oriented Programming
Examples

class StringBuffer ({

synchronized StringBuffer append(StringBuffer sb) {

int len = sb.length()
yield;

// allocate space for len chars
sb.getChars (0, len, value, index);
return this;

}

synchronized void getChars(int, int, char[], int) {...}
synchronized void expandCapacity(int) {...}

synchronized int length() {...}

volatile int x; Version 1

void update x() {

= slow f(x);

X
SR i d

N
No yield between
accesses fo X

)

Cooperative /\ Coop/preemptive

> Preemptive
Correctness Equivalence

Correctness

void update x() { Version 2
acquire (m) ;
x = slow_f(x);
release (m) ;

But...
Bad performance

v

Preemptive
-> Correctness

SO\
P

Cooperative /\ Coop/preemptive
Correctness Equivalence

void update x() { Version 3
int fx = slow f(x);
acquire (m) ;
x = £x;
“release (m) ;

}

N
No yield between
accesses fo X

)

> Preemptive

Cooperative /\ Coop/preemptive
Correctness

Correctness Equivalence

void update x() { Version 4
int fx = slow £ (x) ;
yield; -
acquire (m) ;

x = £x;
“release (m) ;

}

4 N

Stale value
after yield
V J

N\

Cooperative /\ Coop/preemptive > Preemptive
Correctness Equivalence Correctness

void update x() { Version 5

int y = x; (test and retry)
for (;;) {

yield;

int fy = slow f(y):

fy, return;

N
No yield between
accesses fo X

)

Cooperative /\ Coop/preemptive

> Preemptive
Correctness Equivalence

Correctness

void update x() {

int y = x;

for (;;) {
yield;
int fy = slow f(y):
acquire (m) ;
if (x == y) {

x = fy; release(m); return;

}
Yy = X,
release (m) ;

Version 6

> Preemptive

Cooperative /\ Coop/preemptive
Correctness

Correctness Equivalence

Do Yields Help?

« Hypothesis: Yields help code comprehension
and defect detection

« User study [Sadowski, Yi PLATEAU 2010]

* Methodology
— Web-based survey, background check on threads
— Two groups: shown code with or without yields
— Three code samples, based on real-world bugs
— Task: Identify all bugs

Do Yields Help?

All Samples Concgz;ency Some other bug [Didn't find bug | Total
Yields 30 3 3 36
No Yields 17 6 21 44

Difference is statistically significant

Static Program Analysis for Cooperability

JCC: Cooperability Checker

class A {
int x;
void m()

yield;

//Qracy
{

synchronized..

}

}\/
« Extension of Java's type system

« Input: Java code with
— traditional synchronization

— yield annotations
— annotations on racy variables (verified separately)

« Theorem:Well-typed programs are yield correct
(cooperative-preemptive equivalent)

— >

-

-

JCC

\

/

ol

v

for Java

N

X

Missing
yield
at ...

Identifying Yield-Correct Code

» Commuting Classifications

R Right-mover Acquire

L Left-mover Release

M Both-mover Race-Free Access
N Non-mover Racy Access

Y VYielding yield

 Cooperable blocks have the pattern:
((R™ [NJL*) ¥)* [R* [N]L™]

Coop/Preemptive Equivalence

» Trace is coop/preemptive equivalent if
each thread satisfies DFA

R|B

Concurrency Control and Recover in Database Systems, Bernstein, Hadzilacos, Goodman, 1987

Examples

void deposit (int n) R acquire (m) R
synchronized(m) {IM tl = bal M
tl = bal; /lT release (m) L _
} . F yield Y
yield; Y
synchronized (m) {(-
bal = t1 + n; R acquire (m) R
} M bal = t1 + n M
} \ release (m) L _
L

((R* [NJL*) ¥)* [R* [N]L*]

Traces

Preemptive

acquire (m)

Cooperative

tl = bal

release (m)

yield

acquire (m)

tl = bal

release (m)

yield

yield

acquire (m)

yield

bal = t1 + n

acquire (m)

yield

release (m)

yield

YV V VvV V

bal = t1 + n

release (m)

yield

yield

Summary of Static Analysis

» Compute an effect for each program
expression/statement

» Effect summarizes how that computation
interacts with other threads

R Right-mover Acquire

L Left-mover Release

M Both-mover Race-Free Access
N Non-mover Racy Access

Y VYielding yield

class TSP {
volatile int shortestPathlLength;

void searchFrom(Path path) {
if (path.length() >= shortestPathLength) return;

if (path.isComplete()) { \ Racy Read

NV o

-Racy Read

if (path.length() < shortestPaEhLength)
shortestPathLength = path.length() ;

} else { \ Racy Write

for (Path c : path.children()) {

searchFrom(c) ;

class TSP {
Object lock;
volatile int shortestPathlLength; // lock held on writes

void searchFrom(Path path) {
if (path.length() >= shortestPathLength) return;

if (path.isComplete()) {
yield;
synchronized (lock) {
if (path.length() < shortestPathLength)
shortestPathLength = path.length() ;
}
} else {
for (Path c : path.children()) {
yield;
searchFrom(c) ;

class TSP {
Object 1lock;
volatile int shortes

class Path {
mover int length/()
mover boolean isComplete ()

void searchFrom(Path| }
if (path.length()

one transaction that
commutes with other

if (path.isComplete()) 1 thread operations

yield;

synchronized (lock) {
if (path.length() < shortestPathLength)

shortestPathLength = path.length() ;
}
} else {

for (Path c : path.children()) {
yield;
searchFrom(c) ;

class TSP {
Object lock;
volatile int shortestPathlLength; // lock held on writes

compound void searchFrom(Path path) {
if (path. shortestPathLength) return;

if (path.isComplete()) {
yield;
synchronized (lock) {
if (path.length() < shortestPathLength)
shortestPathLength = path.length() ;

series of transactions
that do not commute

}
} else {

for (Path c : path.children()) {
yield;
searchFrom(c) ;

class TSP {
Object 1lock;
volatile int shortestPathlLength; // lock held on writes

compound void searchFrom(Path path) {
if (path.length() >= shortestPathLength) return;

if (path.iscm) { N

yield;
synchronized (lock) {
if (path.length() < shortestPathLength)
shortestPathLength = path.length() ;

}

} else {
for (Path c : path.children()) {
yield;
searchFrom(c) ;

) ((R* [NJL*) ¥)* [R*™ [N]L*]

class TSP {
Object lock;
volatile int shortestPathlLength; // lock held on writes

compound void searchFrom(Path path) { M: N

4

if (path.length() >= shortestPathlLength) return;

Im

if (path.isComplete())—¢ —
synchronized (lock) { R

if (path.length() < shortestPathLength) —-

shortestPathLength = path.length(); —_ M. M

} M. N
} else { LE_
for (Path c : path.children()) {
yield;
searchFrom(c) ;

) ((R* [NJL*) ¥)* [R*™ [N]L*]

class TSP {
Object lock;
volatile int shortestPathlLength; // lock held on writes

compound void searchFrom(Path path) { M: N

4

if (path.length() >= shortestPathlLength) return;

if (path.isComplete()) ;,/////’{&E

1

yield;
synchronized (lock) {
if (path.length() < shortestPathLength)
shortestPathLength = path.length() ;

}

} else { AM
for (Path c : path.children())

yield; f;‘
searchFrom(c) ; Y:N)*
) \N}()

) ((R* [NJL*) ¥)* [R*™ [N]L*]

class TSP {
Object 1lock;
volatile int shortestPathlLength; // lock held on writes

compound void searchFrom(Path path) { M: N

4

if (path.length() >= shortestPathlLength) return;

if (path.isComplete()) %””///{&E

yield; Y

I

if (path.length() < shortestPathLength)——"y]
shortestPathLength = path.length() ; ~ ‘

M. N
} else {
for (Path c : path.children()) {
yield;
searchFrom(c) ;

) ((R* [NJL*) ¥)* [R*™ [N]L*]

Conditional Effects

class StringBuffer {
int count;

non-mover

}

}

R
synchronized int length() ({ _ﬂéﬁzz::::::::/M
return count;
i
non-mover R
synchronized void add(String s) { —
M
}
L

}

StringBuffer sb; /éﬁﬁﬁﬁi::
synchronized (sb) {

if (sb.length() < 10)— |
sb.add ("moo") ;

X

—\Z|Z P

Conditional Effects

class StringBuffer ({ this
int count; hot this
held held
this ? mover : non-mover R M
synchronized int length() { — M M
return count;
) L) (M
this ? mover : non-mover R M
synchronized void add(String s) { —
. .. M M
}
} L M

}

StringBuffer sb; /éﬁﬁﬁﬁﬁ::

synchronized (sb) {
if (sb.length() < 10)— |
sb.add ("moo") ;

v

—= (=

class TSP {
Object 1lock;
volatile int shortestPathlLength; // lock held on writes

compound void searchFrom(Path path) {
yield;
if (path.length() >= shortestPathLength) return;

if (path.isComplete()) {
yield;
synchronized (lock) {
if (path.length() < shortestPathLength)
shortestPathLength = path.length() ;
}
} else {
for (Path c : path.children()) {
yield;
searchFrom(c) ;

class TSP {
Object 1lock;
volatile int shortestPathlLength; // lock held on writes

compound void searchFrom(Path path) {

if (path.length() >= ..shortestPathLength) return;

e

if (path.isComplete()) {

. .synchronized(lock) {
"™ i f (path.length() < shortestPathLength)
shortestPathLength = path.length() ;
}
} else {
for (Path c : path.children()) {

. .searchFrom# (c) ;

}m et

Full Effect Lattice

one transaction that
does not commute

series of transactions
that do not commute

SR T
s

CY

one transaction that commutes with
AF other thread operations

Size Annotation | Anotation

Pr'ogr'am (LOC) Time (min.) Count
java.util.zip.Inflater 317 9 4
java.util.zip.Deflater 381 7 8
java.lang.StringBuffer 1,276 20 10
java.lang.String 2,307 15 5
java.io.PrintWriter 534 40 109
java.util.Vector 1,019 25 43
java.util.zip.ZipFile 490 30 62
sparse 868 15 19
tsp 706 10 45
elevator 1,447 30 64
raytracer-fixed 1,915 10 50
sor-fixed 958 10 32
moldyn-fixed 1,352 10 39
Total 13,570 231 490
Total per KLOC 17 36

Number of Interference Points
Program No Atomic Unintended
Spec \| Race~//Atomic .- Race | Yield Yields
java.util.zip.Inflater 24 4 A W 0 0
av Interference at: 0
JVF Interference g ence at:
Jav * yield points 1
Jav| + racy field ac A= field accesses 0
jav| all lock GCQUiF’Eo 77 ock gcquires 9
jav] *atomic method calls 106 | S = - 1
jav| | 105| 8| 53] 30 0
spa In hon-atfomic mefhods/ 98 48 14 6 0
Tsp 445 0
454 :

elevator Fewer Interference Points:
raytracer-fixed 565 . |

. Easier to Reason about Code!
sor-fixed 249
moldyn-fixed 983

I Total per KLOC

Dynamic Program Analysis for Cooperability

Copper
[PPOPP 11]

yield;

acquire (m) ;

while (x>0) {
release (m) ;

acquire (m) ;
}
assert x==0;
release (m) ;
yield;

yield

acquire (m)

test x > 0

yield

release (m)

acquire (m)

x =1

release (m)

acquire (m)

test x > 0

yield

release (m)

yield

Copper

* Build
Transactional
Happens-Before
— program order
— sync. order
— comm. order

v

yield

¥

acquire (m)

¥

test x > 0

k4

¥

yield

release (m)

v

|

acquire (m)

¥

x =1

¥

release (m)

acquire (m)

¥

test x > 0

|

¥

yield

release (m)

¥

¥

¥

yield

¥

v

Copper

* Build

Transactional
Happens-Before

* Yields mark
transaction

ends

* Cycles indicate
missing yields

v

yield

¥

acquire (m)
test x > 0

release (m)

acquire (m)
test x > 0

release (m)

yield

k4

yield

|

/

\

acquire (m)
x =1

release (m)

yield

Copper

yield;
acquire (m) ;
while (x>0) {
release (m) ;
yield;
acquire (m) ;
}
assert x==0;
release (m) ;
yield;

yield

l

acquire (m)
read x
release (m)
yield

/

l

acquire (m)
read x
release (m)

acquire (m)
x =1
release (m)
yield

\

Copper Results

program LLOC No Ana\lysis ﬁ;g{m;gy YieId%
Sparse 712 Interference at: N
SC’r/In’rer'fer'ence at: ence at:
ser « yield points
cry| e field accesses _ /]d accesses
mo| * all lock acquires 64| < all lock acquires)
elel *atomic method calls 54 3
luf§ , 57 3
rayt\\/\n non-atomic methods / 65 3
montecarlo |3557 377 ‘
hedc 6409 305 Fewer interference points:
mtrt 6460 695 less to reason about!
raja 6863 396 ’ '
colt _ lrseaa leor £ [113

ligsaw __ lase7a J3a1s

Coopér'ative Scheduler
* Sequential Reasoning

 Except at yields

acq (m)

x =0

rel (m)

yield
barrier
yield

yield
acq (m)
X =2
rel (m)
yield

Cooperative
Correctness

A

Cooperative
Concurrency

acq (m)
x =0
rel (m)
yield

=

yields mark all
thread
interference
Yield N

Correctness

SO\

IR

7 AN

- /

Preemptive Scheduler
* Full performance
* No overhead

acq(m)
x =0
rel (m) ...
yield barrier
- yield
yield acq (m)
Xx = 2
rel (m)
yield
> Preemptive
Correctness

Summary

* Race freedom
— code behaves as if on sequentially consistent memory model

— http://www.cs.williams.edu/~freund/papers.html

* Atomicity
— code behaves as if atomic methods executed serially

— http://users.soe.ucsc.edu/~cormac/atom.html

* Yield-oriented programming
— code behaves as if run on cooperative scheduler

— sequential reasoning ok, except where yields document
thread interference (1-10/KLOC)

— http://users.soe.ucsc.edu/~cormac/coop.html

Where To Go From Here?

Static Race Checking Analysis

Performance (goal is always-on precise detection...)
— HW support

— static-dynamic hybrid analyses

— sampling

Coverage

— symbolic model checking, specialized schedulers

Classify malignant/benign data races
— which data races are most critical?

How to respond to data races? warn/fail-fast/recover?

Reproducing traces exhibiting rare data races
— record and replay

Generalization: reason about traces beyond the observed
trace

Where To Go From Here?

« Other analyses for yield correctness
« Other non-interference properties

— determinism, ...
« Deterministic schedulers
« Record-and-replay
« Other programming models

— domain-specific

— multicore and distributed programming

Key References

R. J. Lipton. Reduction: A method of proving properties of
parallel programs. CACM, 1975.

C. Flanagan, S. N. Freund, M. Lifshin, and S. Qadeer. Types for
atomicity: Static checking and inference for Java. TOPLAS,
30(4), 2008.

C. Flanagan and S. N. Freund. Atomizer: A dynamic atomicity
checker for multithreaded programs. POPL, pages 256-267,
2004.

C. Flanagan, S. N. Freund, and J. Yi. Velodrome: A sound and
complete dynamic atomicity checker for multithreaded
programs. PLDI, pages 293-303, 2008.

J.R. Larus and R. Rajwar. Transactional Memory, 2006.

M. Herlihy and J. E. B. Moss. Transactional memory:

architectural support for lock-free data structures. ISCA,
pages 289-300, 1993.

Key References

* M. Isard and A. Birrell. Automatic mutual exclusion. In Workshop
on Hot Topics in Operating Systems, pages 1-6, 2007.

« C. Sadowski and J. Yi. Applying usability studies to correctness
conditions: A case study of Cooperability. In Onward! Workshop on
Evaluation and Usability of Programming Languages and Tools, 2010.

« C. A. Stone, M. E. O'Neill, and The OCM Team. Observationally
cooperative multithreading. In OOPSLA Companion, pages 205-206,
2011,

« L. Wang and S. D. Stoller. Runtime analysis of atomicity for
multithreaded programs. TEEE Transactions on Software
Engineering, 32:93-110, 2006.

- J.Yi, T. Disney, S. N. Freund, and C. Flanagan. Cooperative types
for controlling thread interference in Java. ISSTA, pages 232-
242,2012.

« J. Vi, C. Sadowski, and C. Flanagan. Cooperative reasoning for
preemptive execution. PPOPP, pages 147-156, 2011.

