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Lecture Goals

* Enforcing concurrency properties
- facilitates reasoning about correctness

- race freedom, atomicity, determinism,
cooperability

 Static and dynamic analyses
- designh space
- implementation techniques
- limitations

* Open research questions



Concurrent Programming Models

* Shared memory and explicit threads / sync

Unshared: Shared:
locals and objects and
control flow tatic fields

pC

* Others
- message passing, tfransactions, ...



Deterministic Parallelism




Non-Deterministic Concurrency

Bank of America | Home | Personal

Personal Small Business
P>
Bankof America %7 Locaﬁons[[

swin 3 |R—

8 Save this Online ID Enroll

Select account location

Sign in to other services Sign-in helploptions

? Online Banking

Take charge of your money with 24 /7 access

[+] Share website feedback
= - J Jal»




Open Research Problems

* Making concurrency/parallelism readily
accessible to all programmers

* Developing programming models beyond shared
memory

e How to write efficient multithreaded code

e How to write correct multithreaded code



Thread Interference: Data Races

 Concurrent conflicting accesses

- Two threads read/write, write/read, or write/
write the same location without intervening
synchronization

Thread A
/ Thread A Thread B \
tl = bal;
bal = t1 + 10;
tl = bal

bal = t1 + 10

Thread B £2 = bal

éé.= bal; bal = t2 - 10

bal = t2 - 10; k /




Thread Interference: Data Races

 Concurrent conflicting accesses

- Two threads read/write, write/read, or write/
write the same location without intervening
synchronization

Thread A

/ Thread A Thread B \

tl = bal;

bal = t1 + 10;

tl = bal
t2 = bal

Thread B bal = t1 + 10

éé.= bal; bal = t2 - 10

bal = t2 - 10; k /




Thread Interference: Atomicity Violations

Thread A
acq(m) ;
tl = bal;
rel (m) ;

acq(m) ;
bal = t1 + 10;
rel (m) ;

Thread B
acq(m) ;
bal = 0
rel (m) ;

/,Thread A

Thread B ﬂ\\

acq (m)

tl = bal

rel (m)
acq (m)
bal = 0
rel (m)

acq (m)

bal = t1 + 10

rel (m)

o




Thread Interference: Ordering Violations

Thread A

t = null;
fork (Thread B)
t = new Task()

Thread B
t.perform() ;

/r Thread A

t = null

fork (Thread B)

t = new Task ()

Thread B \\

t.perform()




Thread Interference: Unintended Sharing

void work () {
static int local

local++;

Thread A

work () ;

Thread B
work () ;

0;

/ffThread A

local

Thread B ‘\\

t2

local

local

o

local

/




Thread Interference: Deadlock

class Account {
int bal;
synchronized void deposit(int n) { bal = bal + n; }

synchronized void transfer (Account other, int n) {
other.deposit(n) ;
this.deposit(-n) ;

}

Thread A / Thread A Thread B \
a.transfer(b,10) ;
acq(a)
Thread B acq(b)

b.transfer (a,10) ; \‘ ,/




Data Race Detection

e Atomicity violations
* Ordering violations
* Unintended sharing

e Deadlocks and livelocks

races are
often
a symptom
of these
errors



Thread Interference: Atomicity Violation

Thread A

tl = bal;

bal = t1 + 10;

Thread B

t2 = bal;

bal = t2 - 10;

//7Thread A

tl = bal

Thread B ‘\\

o

bal = t1 + 10

t2 = bal

bal = t2 - 10

/




Thread Interference: Ordering Violations

Thread A

t = null;
fork (Thread B)
t = new Task()

Thread B
t.perform() ;

/r Thread A

t = null

fork (Thread B)

t = new Task ()

Thread B \\

J




Thread Interference: Unintended Sharing

void work () {
static int local

local++;

Thread A

work () ;

Thread B
work () ;

0;

//7Thread A

tl = local

o

local = tl+1

Thread B ‘\\

t2

= local

local

/




Are All Race Conditions Errors?

* Implementing flag synchronization

boolean done = false;

Thread A Thread B
x =1; if (done) t = x;
done = true;

* Implementing fast reads
int bal = 0;
Thread A Thread B

synchronized (m) ({ t = bal;
bal = bal + n;

}



Treated as "synchronization”
- Documents potential sharing
- Improves program semantics
In C++: std::atomic<> types

Are All Race Conditi

* Implementing fl

volatile boolean done = false;

Thread Thread B
x = 1; if (done) t = x;
done = true;

* Implementing fast reads
volatile int bal = 0;
Thread A Thread B

synchronized (m) ({ t = bal;
bal = bal + n;



Data Races and Memory Models

{ij -

Network

TN

Chip Multiprocessor (CMP)

* Each processor/core has a cache

* When do writes to x become visible to other
processors (threads)?



Memory Models

» Sequential Consistency

- Operations by threads are interleaved in some
global sequential order.

- A read yields the value most recently written
to that location according to this order.

- Simple, intuitive



Java Example
int x;
int y;
Initially x ==y == 0;

Thread A Thread B
x = 10; rl = vy,
y = 20; r2 = X;

print rl + r2;

What's Printed? 30? 20? 10? 0O?



Memory Models

» Sequential Consistency

- Operations by threads are interleaved in some
global sequential order.

- A read yields the value most recently written
to that location according to this order.

* Relaxed Models (JMM, x86-TSO, etc.)
- writes may be buffered in caches
- more than one value written to x may be visible
- hecessary for hardware performance
- (also enables compiler optimizations)



Example

int x = 0;
boolean done = false;
Thread A Thread B
x = 10; while ('done) { }
done = true; print x;
int x = 0;

volatile boolean done = false;

Thread A Thread B
x = 10; while ('done) { }

done = true; print x;



Why Look For Races?

* Programmers make errors leading to data races:
- Missing locking
- Missing "volatile" annotations

* Must know about races to reason about any
more sophisticated concurrency property

* Memory Model Guarantee:
- Data-Race Freedom > Seq. Consistent Behavior



Data Race Detection

* Automated Tools to Find Data Races
- Active area of research for > 20 years
- More than 100 academic papers on the subject

 Key dimensions of the design space are not
unique to data-race detection

- type-checking
- array-bounds
- pointer errors
- efc.



Static Data Race Detection

* Advantages:

- Reason about all inputs/interleavings

- No run-time overhead

- Adapt well-understood static-analysis techniques
- Annotations to document concurrency invariants

* Example Tools:
- RCC/Java
- CHESS
- ESC/Java

type-based
state exploration

"functional verification"
(theorem proving-based)



Static Data Race Detection

* Advantages:
- Reason about all inputs/interleavings
- No run-time overhead
- Adapt well-understood static-analysis techniques
- Annotations to document concurrency invariants

 Disadvantages of static:
- Undecidable...
- Tools produce “false positives” or "false negatives”
- May be slow, require programmer annotations
- May be hard to interpret results



Dynamic Data Race Detection

* Advantages
- Can avoid "false positives”

- No need for language extensions or
sophisticated static analysis

 Disadvantages
- Run-time overhead (5-20x for best tools)
- Memory overhead for analysis state

- Reasons only about observed executions
= sensitive to test coverage
= (some generalization possible...)



Dynamic Analysis Design Space

* Soundness
- every actual data race is reported
* Completeness
- all reported warnings are actually races
* Coverage
- generalize to additional traces?
* Overhead
- run-time slowdown
- memory footprint
* Programmer overhead



Overview of Analysis Techniques

* Lamport's Happens-Before Relation [Lamport 78]
- enables precise definition of data race

* Four points in design space
1. LockSet
2. Vector Clocks
3. Hybrid LockSet/VC
4. FastTrack



Happens-Before Thread A Thread B

* Event Ordering:

- program order |x =0
- synchronization order
- transitivity rel (m)
* Types of Data Races: \ acq (m)
- Write-Write :
- Write-Read .
= (write then read) | 0?/-0,0" |* =1
- Read-Write | \20}’
* (read then write) v = x



l fork 2

el(m)

\%{m

rel(m)
vol = 1

rel(m) \ /
l acq(m)

cq(m)

l’rmp = vol




Dynamic Data Race Detection

Precision

y ya

Happens
Before

“\lLamport 78]

7

« Sound & Complete

(> (No Trace Generalization)

€ Compute partial order of operations
» Ensure conflicting operations are not unordered

N\

\

J

Eraser
[SBN+ 97]

Cost




Dynamic Data Race Detection

Precision

y ya

Happens

Before
[Lamport 78]

e Enforce consistent locking discipline
(each variable is protected by a lock)
 Unsound & Incomplete

* Some trace generalization

~

L —
Eraser

[SBN+ 97]

Cost




Approximating Happens-Before

* Track lockset for each memory location
- LockSet(x): set of locks held on all accesses to

location x
* If m € LockSet(x): If LockSet(x) is empty:
x =0 x = Oq ar
TS \gCe

rel (m)
\acq(m) Ct=x

t = x




Lockset Example

Thread A Thread B
synchronized (x) { synchronized(y) {
synchronized(y) { o.f = 2;
— o.f = 2; }
}
o.f = 11;

}
* First access to o. f:

LockSet(o. £) := Held(curThread)
={x,y}



Lockset Example

Thread A Thread B
synchronized (x) { synchronized(y) {
synchronized(y) { o.f = 2;
o.f = 2; }
}
> o.f = 11;

}

e Subsequent access to o. £f:

LockSet(o. £) := LockSet(o.£) N Held(curThread)
={x,y}n{x} = {x}



Lockset Example

Thread A Thread B
synchronized (x) { synchronized(y) {
synchronized(y) { — o.f = 2;
o.f = 2; }
}
o.f = 11;

}

e Subsequent access to o. £f:

LockSet(o. £) := LockSet(o.£) N Held(curThread)

={x}n{y}={)
DATA RACE!



Lockset Properties

* Relatively good performance (slowdowns < ~15x)
* Sound:

No warnings > data-race-free execution
* Incomplete:

Warning )é data race on execution

- thread-local data, read-shared data, etc



Per-Variable State Machine

first thread
r/w

Thread
Local

second

thread

secon
threa

any thread write
r/w

‘Shared—ré;;;;;;;;\\\\:

Track lockset

thread
MWeead



Lockset Properties

* Extensions help reduce false alarms but
- introduce (rare) unsoundnesses
- and still not complete...

boolean ready = false;
int data = 0;

Thread A Thread B
data = 42; sync (m) {
sync (m) { tmp = ready;
ready = true; }

} if (tmp)

print (data)



Dynamic Data-Race Detection

—
Vector Clocks [M 88] Happens
Goldilocks [EQT 07] Before
DJIIT+ [Isz 99,5 03] |[Lamport 78]
TRaDe [¢B 01]

Precision

Barriers [PS 03]
Initialization [vPG 01]

Eraser
[SBN+ 97]

Cost
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Ve, VC,
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A's local time  B's local time :




VC, VCy
4 |41 218
A |[B A B

B-steps with B-time < 1
happen before
A's next step




Ve,

VC,

Write-Write Check: W,CVC, ?
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VectorClocks for Data-Race Detection
e Sound

- No warnings = data-race-free execution
* Complete

- Warning = data-race exists
* Slow performance

- (slowdowns > 50x)



Dynamic Data-Race Detection

Precision

Vector Clocks [M 88] Happens
oldilocks [EQT 07] Before
< [Lamport 78]

RaceTrack [YRC 05]
MultiRace [PS 03]
Hybrid Detector [OC 03]
Acculock [XXZ 13]
IFRit[ELCGB 12]

Initialization [vPG 0O1]

Eraser
[SBN+ 97]

Cost



Combined Approaches

* MultiRace [PS 03,07]
- Use LockSet for x
- Switch to VC if LockSet becomes empty
- (adaptive granularity as well)

* RaceTrack [YRC 05]

- Use Locket for x with extensions to Eraser
state machine.

- Use VCs to reason about fork/join and wait/
notify



Slowdown (x Base Time)

50 89.8

45 -
40 -
35 31.6
30 -
25 1 21.7
20 -
15 -

10 8.6
5 41

, N

Empty Eraser

Tools implemented
in RoadRunner

framework for
Java [PASTE 10]

20.2

MultiRace Goldilocks Basic VC

DIIT+



Dynamic Data-Race Detection

Precision

FastTrack

[Flanagan-Freund 09]

Happens

Before
[Lamport 78]

ack [YRC 05]
MultiRace [PS 03]
Hybrid Detector [OC 03]
Acculock [XXZ 13]
IFRIt[ELCGB 12]

Initialization [vPG 0O1]

Eraser
[SBN+ 97]

Cost




Dynamic Data-Race Detection

Precision

FastTrac

[Flanagan-Freund

Hyb

Barriers [P
Initialization [Vi

K for Clocks (M sa]\  1APPens
dilocks [EQT 07] Before
Q PS 03] [Lamport 78]
* Design Criteria: \

- sound & complete
(find at least 1st data race on each var)
- efficient
* Insight:
 HB relation is a partial order

Eraser
[SBN+ 97]

* But all accesses to a var are
K almost always totally ordered /

Cost



Ve,

VC,

Write-Write Check: W,CVC, ?

3

0

4

1

? Yes

Read-Write Check: R,CVC,?

0

1

4

1

? Yes

O(n) time




Write-Write and Write-Read Data Races

Thread A Thread B Thread C Thread D




No Data Races Yet: Writes Totally Ordered

Thread A Thread B Thread C Thread D




No Data Races Yet: Writes Totally Ordered

Thread A Thread B Thread C Thread D

Q@ Q@ Q@ I
: X =3

Q
read x l >O(1)



Last Write
VG, A w, "“Epoch"

2| 8 121 I@B/

Write-Write Check: W,EVC, ?
@B |[=X|4]|1]|?2 VYes

(1 ¢ 1?)

O(1) time




Ve, VC,
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Write-Read Check: W, & VC, ?

8@B |[=<|5]1]? No
8<1?)  0) time
* |acq(m) ;
4|8 4|1 A@A
x =1
1|8 a1 ]([ ses




Read-Write Data Races -- Ordered Reads

Thread A Thread B Thread C Thread D

Most common case: thread-local, lock-protected, ...



Read-Write Data Races -- Unordered Reads

Thread A Thread B Thread C




VC,

read x:

T@A -
T@A -
T@A 1@B
T@A | |8

)

O(1)
O(n)

O(n)

Read-Write Check: R, ,CVC,?

8

1

8

0

? No




Thread A Thread B Thread C Thread D

? ’ ? ?

O
Q@
:
.
O

> o(n)



Thread A Thread B Thread C Thread D

? ’ ? ?

O
Q@
:
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Thread A Thread B Thread C Thread D

0 0 > .

read y

Q-0 -0~ - O - - OO0~




Thread A Thread B
; ;
CFr'ead y Ir‘ead Yy
¢
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Forget VC for R,
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to "last read epoch"
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Slowdown (x Base Time)

50 89.8

45

40

3> 31.6

30

2> 21.7
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Empty Eraser MultiRace Goldilocks Basic VC DIIT+ FastTrack




Memory Usage
e FastTrack allocated ~200x fewer VCs

Memory
Checker Overhead
Basic VC,
DILT+ 7.9
FastTrack 2.8x
Empty 2.0x

(Note: VCs for dead objects are garbage collected)

* Improvements
- accordion clocks [CB 01]
- analysis granularity [PS 03, YRC 05]



Precise Data Race Classification for

Other Checkers

Atomizer

Velodrome

SingleTrack

mC

mF

riginal

ast Track

refilter

0 20 40 60

80

100

Average Slowdown (x base time)

and ~40% reduction in false alarms in Atomizer...

120




Eclipse 3.4

Europa
!
0205-0009
- > 6,000 classes L
/ i ic s and others, 2000, 2006, All rights reserved. J all Java-
m e trademarks or registered trademarks of Sun Microsystems,
In . or both, Eclipse is a trademark of the Eclipse Foundation, Inc.

- 24 threads
- custom sync. idioms

* Precision (tested 5 common tasks)
- Eraser: ~1000 warnings
- FastTrack: ~30 warnings

* Performance on compute-bound tasks

- > 2x speed of other precise checkers
- same as Eraser



Verifying Race Freedom with Types

class Ref Property: Each
iz‘_:di;dd(Ref o shared variable
i=4i+r.i; must be pr'oTecTed
. by a lock.

Ref x = new Ref (0);
Ref y = new Ref (3);
parallel {
sync(x,y) { x.add(y); }
sync(x,y) { x.add(y); }
}

assert x.1 ==



Verifying Race Freedom with Types

Property: Each
class Ref ({ Sh d . bl
int i guarded by this; ared variabile
void add(Ref r) requires this, r { | must be proTecTed

i=1+r.i;

} by a lock.

}

Ref x = new Ref (0);
Ref y = new Ref (3);
parallel {

sync(x,y) { x.add(y); }

sync(x)  { x.add(y); } €= Error: lock y not held
}

assert x.i ==



Client-Side Locking

class Ref<ghost g> {
int i guarded by g;
void add (Ref<g> r) requires g {

i=1i+r.i;

Object m = new Object() ;
Ref<m> x = new Ref<m>(0);
Ref<m> y = new Ref<m>(3);
parallel {
sync(m) { x.add(y); }
sync(m) { x.add(y); }
}

assert x.1i == 6;



Static Race Detection In Practice

* Rcc/Java [Flanagan-Freund 00-06]
* Other Systems

- Ownership types [Boyapati et al 01]
- RacerX [Engler-Ashcraft 02]
- Chord [Naik et al 06]

- Object Use Graphs [vonPraun-Gross 03]

* Limitations
- scalability
- unsound or incomplete



Static Analysis to Optimize Dynamic Checks

Precision

RedCard + FastTrack
FastTrack [FF 09]

RaceTrack [YRC 05]
MultiRace [PS 03]
Hybrid Detector [OC 03]
Acculock [XXZ 13]
IFRIT[ELCGB 12]

Barriers [PS
Initialization [vPG 01]

Er'a%\

[SBN+ 97]

Goldilocks [EQT 07]
DJIT+ [ISZ 99,PS 03]
TRaDe [CB 01]

Cost

Happens Before
[Lamport 78]

In source code:

£ x.fCheck;

_ NoCheck .
u =yvy.g ;

Options for Skip checks
1. on race-free access.
2. that are redundant.



Release-Free Spans

|

release (m)

acquire (m)

—_— oy,
-----~
L

|

release (m) \

* Sequence of ops
by one thread

* No outgoing edges

- eg: ho releases,
forks, waits, ...

e ITf B races with C
then A races with C

* Race check on B is
redundant



RedCard: Redundant Check Elimination
[ECOOP 2013]

* Find accesses always touching memory previously
accessed within current release-free span

 Remove checks on those accesses

sync (m) { sync (m) {
t = x.f; L= ko Fast
t = x.£; || RedCard | \ t = x.puoes; ) Track
=t e

* No change in precision
- No missed races
- No spurious warnings



Other Uses of Similar Notions

* Interference-Free Regions [Effinger-Dean et al 11, 12]
- compiler optimizations, imprecise race detection

* Similar optimizations for specific race
detection algorithms

- Eraser-based [vonPraun-Gross 02, Choi et al 03]
- X10 task parallelism [Raman et al 10]

e RedCard

- works with any precise race detector
- more sophisticated (but expensive) analysis
- extensions for additional forms of redundancy



Available Paths Analysis

* For each program point, compute Context

- Available Paths: expressions describing memory
previously accessed in current span

{ }
{ x.£ }

{ x.£ }

{ }
{ x.£ }

x.fisan
available path

.l.: — X.fCheCk,‘ /

t = x. fNoCheck;

rel (m) ;

t = x. fCheCk;

(for simplicity, assume no distinction between reads and writes)



Must Aliases

: : C A x.h Isan
* Include must-alias constraints in & . qilable bath
andy = x
t} x = z.gCheck,.
{Z g, X : zZ.g i }_‘y _ z.gNoCheck;
{z'gl X =2.9, Y = zg}_ti = 5 hCheck
{z.g, x.h, x = z.g, v = z.g} _té _ y . nNoChesk

* Implement via any sound decision proc. (Z3)
 Similar to type state tracking [Fink et al 08]




Redundant Array Accesses

for (int i = 0; i < a.length; i++) {

a[i]CheCk = .

}
for (int i = 0; 1 < a.length; i++) {
a[i]NoCheck =

}

.
LI 4

.
L 4

* Context extensions
- Paths for array accesses
= single: al[i]
"range: V(i € 0 to n).a[i]
- Linear inequalities



i=20;
while (i < a.length) {

i=1i4+1;

V(j € 0 to a.length) .a[j]




i =
while (i < a.length)

-

o

Loop Invariant:
V((j €0 to i).a[]j]

Inferred Via Cartesian
Predicate Abstraction
[BMMR 01, FQ 02]

i

|

/

0;

=O;

=1+ 1;

NoCheck

= 1;



i=20;
i=20 —o
while (i < a.length) {
i < a.length
V((j €0 to i).a[j] '
i < a.length
a[i]
V((j €0 to i).a[7j]

i=4i"+1)
i' < a.length
afi'] p—
V((j €0 to i').a[]j]

&

}
V(j € 0 to a.length).a[j] —



RedCard Implementation for Java

* WALA framework for Java bytecode [IBM]
- Dataflow analysis over SSA-based CFGs
- Z3 [deMoura-Bjegrner 08] to reason about Contexts

* Infers and outputs list of "NoCheck" accesses

* Two Modes
- Intra-procedural

- Inter-procedural (O-CFA, CHA)

* Analysis Time: ~18 sec per KLOC



7% of Run-time Accesses Checked

¢
%

4.
o

%
- | | | | | v

B S D N X
1IIIIIIII %,
- | | | | |

.1IIIII

...1""' ,

© O O O O O O O O O
O O N O IO & o N

100

B FastTrack ® RedCard



class Point {
private int x,y;

Proxy Fields

void move () {
o Ei . thi .Check=...;
Field y has proxy field x thi:.;NoCheck RN
if all spans accessing }

p.y also access p.x

int dot(Point o) {
If p.y has race return

. Check
then p.x has race this.x

* o.xCheck
+ thiS.YNOCheCk
e Label p.y as "NoCheck" * o, yNoCheck,
}
» Still identify all fraces int getX() {

with data races return this.xCheck;

}
}



Array Proxies

* Array element can be proxy for other elements

a[0] is proxy foralil [g|1(2[3/4]|5]|6|7

a[i div 4] isproxy foral[il |0|112|314|5|6!|7

* RedCard identifies common array proxy patterns
*b[j] is "NoCheck" if b[j] has proxy other than
itself

- may-alias info about b computed by separate
analysis



7% of Run-time Accesses Checked
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Where To 6o From Here?

e Static Race Checking Analysis
* Performance (goal is always-on precise detection...)
- HW support
- static-dynamic hybrid analyses
- sampling
* Coverage
- symbolic model checking, specialized schedulers

* Classify malignant/benign data races
- which data races are most critical?

* How to respond to data races? warn/fail-fast/recover?

* Reproducing traces exhibiting rare data races
- record and replay

* Generalization: reason about traces beyond the observed
trace
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Jumble: Diagnosing Bad Races

e FastTrack finds real race conditions
- races correlated with defects

- cause unintuitive behavior, especially on
relaxed memory models

- but some are intentional/benign...

* Which race conditions are real bugs?
- that cause erroneous behaviors (crashes, etc)
- and are not "benign race conditions”



Controlling Scheduling Non-Determinism

e lhread A
_>e _ .
e p = new Pt();
—®  p = null;
racy —®
Large read e Thread B
Concurrent —>9
APPli%a‘rion :pr e a1l
—>® .draw () ;
Input —>® P
—e
—e
_>e
—e

(eg: CalFuzzer)



Adversarial Memory [PLDI 2010]
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Application
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memory exploits
memory
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Racy read
sees old value
likely to crash
application.

complements
schedule-based
approaches, quite
effective.



Adversarial Memory [PLDI 2010]
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Sequentially Consistent Memory Model

int x = 10; * Intuitive memory model
x = 0; » Each read sees most recent write
fork{ if (x !'= 0) x = 50/x; } * (No memory caches)
x = 42;
Q Px = 10
x =10
<=0 x =0
fork fork
x = 42
r = x ® Pr =x
r 1= O? r = 0?
r = X
x = 42 r = 50/r
(‘_’) X =r
5




Jumble

int x = 10; Record:
x = 0; .
fork{ if (x 1= 0) x = s0/x; 3 * Write buffer for racy vars
x = 42; * happens-before relation
P« = 10 < notvisible At each read:
x =0 <— visible « determine visible writes
fork » return old writes to crash app
|X = 42\ < visible with higher probability than
@ typical memory impl.
| r = x
: r '= 07
i B heuristically pick O

r
(,,)x = r division by zero



Jumble Precision: failures out of 100 runs

Benchmark: racy field Julr\ln(ljole SC | Oldest E)L:lesé Random R;)ellﬂcij?frp
montecarlo: DEBUG 0 0 0 0 0 0
mtrt: threadCount 0 0 0 0 0 0
point: p 0 0 0 0 0 0
point: x 0 0 60 52 32 30
point: y 0 0 48 53 27 30
jbb: elapsed_time 0 0 100 0 15 5
jbb: mode 0 0 100 100 95 98
raytracer:.checksum1 0 0 100 100 100 100
sor: arrays 0 0 100 100 100 100
lufact: arrays 0 0 100 100 100 100
moldyn: arrays 0 0 100 100 100 100
tsp: MinTourLen 0 0 100 100 100 100

- 27 racy fields (found with FastTrack)
- ran Jumble manually once for each field
R - found 4 destructive races

tors and others, 2000, 2006, All rights reserved and all Java
are tr r registered tradem: i

ipse

Europa

arks of Sun Microsystem:
both. Eclipse is a trademark of the Eclipse Foundation, Inc
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Approximating Redundancy

e Record execution trace

* Annotate accesses in source based on dynamic
occurrences in trace.

sync (m) { ie line i
Yt - (NonRedundant €] Check on this line is
. Z necessary at least

_ Redundant .
t =x.f ; once.
{:. . v. fRedundant; o |
} Check on this line is
_ gNonRedundant, always redundant.




Approximating Redundancy

e Record execution trace

* Annotate accesses in source based on dynamic
occurrences in trace.

sync (m) { sync (m) {
£ = x. fNonRedundant; £ = x. fCheck;
£ = x. fRedundant; £ = x. fNoCheck;
1.: = y. fRedundant; t = y. fCheck;

} }

£ = x. fNonRedundant; £ = x. fCheck;

e Compare to RedCard annotations
— NoCheck Accesses C Redundant Accesses
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Where To Go From Here?

e Static Race Checking Analysis
* Performance (goal is always-on precise detection...)
- HW support
- static-dynamic hybrid analyses
- sampling
e Coverage
- symbolic model checking, specialized schedulers
e Classify malignant/benign data races
- which data races are most critical?
* How to respond to data races? warn/fail-fast/recover?
* Reproducing traces exhibiting rare data races
- record and replay

* Generalization
- reasoh about traces beyond the observed trace






Increasing Redundancy

* Unroll first iteration of loops [Choi et al 03]

i=20;
if (i < N) {
p.fCheCk.m();
for (1 = 1; i < N; i++)
P. fNoCheck.m() ;

for (1 = 0; i < N; i++) :r\V

p.fCheCk.m() ;

* Other transformations:
- method specialization
- redundant synchronization elimination
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