Analysis Techniques to
Detect Concurrency Errors

Cormac Flanagan
UC Santa Cruz

Stephen Freund
Williams College

Lecture Goals

* Enforcing concurrency properties
- facilitates reasoning about correctness

- race freedom, atomicity, determinism,
cooperability

 Static and dynamic analyses
- designh space
- implementation techniques
- limitations

* Open research questions

Concurrent Programming Models

* Shared memory and explicit threads / sync

Unshared: Shared:
locals and objects and
control flow tatic fields

pC

* Others
- message passing, tfransactions, ...

Deterministic Parallelism

Non-Deterministic Concurrency

Bank of America | Home | Personal

Personal Small Business
P>
Bankof America %7 Locaﬁons[[

swin 3 |R—

8 Save this Online ID Enroll

Select account location

Sign in to other services Sign-in helploptions

? Online Banking

Take charge of your money with 24 /7 access

[+] Share website feedback
= - J Jal»

Open Research Problems

* Making concurrency/parallelism readily
accessible to all programmers

* Developing programming models beyond shared
memory

e How to write efficient multithreaded code

e How to write correct multithreaded code

Thread Interference: Data Races

 Concurrent conflicting accesses

- Two threads read/write, write/read, or write/
write the same location without intervening
synchronization

Thread A
/ Thread A Thread B \
tl = bal;
bal = t1 + 10;
tl = bal

bal = t1 + 10

Thread B £2 = bal

éé.= bal; bal = t2 - 10

bal = t2 - 10; k /

Thread Interference: Data Races

 Concurrent conflicting accesses

- Two threads read/write, write/read, or write/
write the same location without intervening
synchronization

Thread A

/ Thread A Thread B \

tl = bal;

bal = t1 + 10;

tl = bal
t2 = bal

Thread B bal = t1 + 10

éé.= bal; bal = t2 - 10

bal = t2 - 10; k /

Thread Interference: Atomicity Violations

Thread A
acq(m) ;
tl = bal;
rel (m) ;

acq(m) ;
bal = t1 + 10;
rel (m) ;

Thread B
acq(m) ;
bal = 0
rel (m) ;

/,Thread A

Thread B ﬂ\\

acq (m)

tl = bal

rel (m)
acq (m)
bal = 0
rel (m)

acq (m)

bal = t1 + 10

rel (m)

o

Thread Interference: Ordering Violations

Thread A

t = null;
fork (Thread B)
t = new Task()

Thread B
t.perform() ;

/r Thread A

t = null

fork (Thread B)

t = new Task ()

Thread B \\

t.perform()

Thread Interference: Unintended Sharing

void work () {
static int local

local++;

Thread A

work () ;

Thread B
work () ;

0;

/ffThread A

local

Thread B ‘\\

t2

local

local

o

local

/

Thread Interference: Deadlock

class Account {
int bal;
synchronized void deposit(int n) { bal = bal + n; }

synchronized void transfer (Account other, int n) {
other.deposit(n) ;
this.deposit(-n) ;

}

Thread A / Thread A Thread B \
a.transfer(b,10) ;
acq(a)
Thread B acq(b)

b.transfer (a,10) ; \‘ ,/

Data Race Detection

e Atomicity violations
* Ordering violations
* Unintended sharing

e Deadlocks and livelocks

races are
often
a symptom
of these
errors

Thread Interference: Atomicity Violation

Thread A

tl = bal;

bal = t1 + 10;

Thread B

t2 = bal;

bal = t2 - 10;

//7Thread A

tl = bal

Thread B ‘\\

o

bal = t1 + 10

t2 = bal

bal = t2 - 10

/

Thread Interference: Ordering Violations

Thread A

t = null;
fork (Thread B)
t = new Task()

Thread B
t.perform() ;

/r Thread A

t = null

fork (Thread B)

t = new Task ()

Thread B \\

J

Thread Interference: Unintended Sharing

void work () {
static int local

local++;

Thread A

work () ;

Thread B
work () ;

0;

//7Thread A

tl = local

o

local = tl+1

Thread B ‘\\

t2

= local

local

/

Are All Race Conditions Errors?

* Implementing flag synchronization

boolean done = false;

Thread A Thread B
x =1; if (done) t = x;
done = true;

* Implementing fast reads
int bal = 0;
Thread A Thread B

synchronized (m) ({ t = bal;
bal = bal + n;

}

Treated as "synchronization”
- Documents potential sharing
- Improves program semantics
In C++: std::atomic<> types

Are All Race Conditi

* Implementing fl

volatile boolean done = false;

Thread Thread B
x = 1; if (done) t = x;
done = true;

* Implementing fast reads
volatile int bal = 0;
Thread A Thread B

synchronized (m) ({ t = bal;
bal = bal + n;

Data Races and Memory Models

{ij -

Network

TN

Chip Multiprocessor (CMP)

* Each processor/core has a cache

* When do writes to x become visible to other
processors (threads)?

Memory Models

» Sequential Consistency

- Operations by threads are interleaved in some
global sequential order.

- A read yields the value most recently written
to that location according to this order.

- Simple, intuitive

Java Example
int x;
int y;
Initially x ==y == 0;

Thread A Thread B
x = 10; rl = vy,
y = 20; r2 = X;

print rl + r2;

What's Printed? 30? 20? 10? 0O?

Memory Models

» Sequential Consistency

- Operations by threads are interleaved in some
global sequential order.

- A read yields the value most recently written
to that location according to this order.

* Relaxed Models (JMM, x86-TSO, etc.)
- writes may be buffered in caches
- more than one value written to x may be visible
- hecessary for hardware performance
- (also enables compiler optimizations)

Example

int x = 0;
boolean done = false;
Thread A Thread B
x = 10; while ('done) { }
done = true; print x;
int x = 0;

volatile boolean done = false;

Thread A Thread B
x = 10; while ('done) { }

done = true; print x;

Why Look For Races?

* Programmers make errors leading to data races:
- Missing locking
- Missing "volatile" annotations

* Must know about races to reason about any
more sophisticated concurrency property

* Memory Model Guarantee:
- Data-Race Freedom > Seq. Consistent Behavior

Data Race Detection

* Automated Tools to Find Data Races
- Active area of research for > 20 years
- More than 100 academic papers on the subject

 Key dimensions of the design space are not
unique to data-race detection

- type-checking
- array-bounds
- pointer errors
- efc.

Static Data Race Detection

* Advantages:

- Reason about all inputs/interleavings

- No run-time overhead

- Adapt well-understood static-analysis techniques
- Annotations to document concurrency invariants

* Example Tools:
- RCC/Java
- CHESS
- ESC/Java

type-based
state exploration

"functional verification"
(theorem proving-based)

Static Data Race Detection

* Advantages:
- Reason about all inputs/interleavings
- No run-time overhead
- Adapt well-understood static-analysis techniques
- Annotations to document concurrency invariants

 Disadvantages of static:
- Undecidable...
- Tools produce “false positives” or "false negatives”
- May be slow, require programmer annotations
- May be hard to interpret results

Dynamic Data Race Detection

* Advantages
- Can avoid "false positives”

- No need for language extensions or
sophisticated static analysis

 Disadvantages
- Run-time overhead (5-20x for best tools)
- Memory overhead for analysis state

- Reasons only about observed executions
= sensitive to test coverage
= (some generalization possible...)

Dynamic Analysis Design Space

* Soundness
- every actual data race is reported
* Completeness
- all reported warnings are actually races
* Coverage
- generalize to additional traces?
* Overhead
- run-time slowdown
- memory footprint
* Programmer overhead

Overview of Analysis Techniques

* Lamport's Happens-Before Relation [Lamport 78]
- enables precise definition of data race

* Four points in design space
1. LockSet
2. Vector Clocks
3. Hybrid LockSet/VC
4. FastTrack

Happens-Before Thread A Thread B

* Event Ordering:

- program order |x =0
- synchronization order
- transitivity rel (m)
* Types of Data Races: \ acq (m)
- Write-Write :
- Write-Read .
= (write then read) | 0?/-0,0" |* =1
- Read-Write | \20}’
* (read then write) v = x

l fork 2

el(m)

\%{m

rel(m)
vol = 1

rel(m) \ /
l acq(m)

cq(m)

l’rmp = vol

Dynamic Data Race Detection

Precision

y ya

Happens
Before

“\lLamport 78]

7

« Sound & Complete

(> (No Trace Generalization)

€ Compute partial order of operations
» Ensure conflicting operations are not unordered

N\

\

J

Eraser
[SBN+ 97]

Cost

Dynamic Data Race Detection

Precision

y ya

Happens

Before
[Lamport 78]

e Enforce consistent locking discipline
(each variable is protected by a lock)
 Unsound & Incomplete

* Some trace generalization

~

L —
Eraser

[SBN+ 97]

Cost

Approximating Happens-Before

* Track lockset for each memory location
- LockSet(x): set of locks held on all accesses to

location x
* If m € LockSet(x): If LockSet(x) is empty:
x =0 x = Oq ar
TS \gCe

rel (m)
\acq(m) Ct=x

t = x

Lockset Example

Thread A Thread B
synchronized (x) { synchronized(y) {
synchronized(y) { o.f = 2;
— o.f = 2; }
}
o.f = 11;

}
* First access to o. f:

LockSet(o. £) := Held(curThread)
={x,y}

Lockset Example

Thread A Thread B
synchronized (x) { synchronized(y) {
synchronized(y) { o.f = 2;
o.f = 2; }
}
> o.f = 11;

}

e Subsequent access to o. £f:

LockSet(o. £) := LockSet(o.£) N Held(curThread)
={x,y}n{x} = {x}

Lockset Example

Thread A Thread B
synchronized (x) { synchronized(y) {
synchronized(y) { — o.f = 2;
o.f = 2; }
}
o.f = 11;

}

e Subsequent access to o. £f:

LockSet(o. £) := LockSet(o.£) N Held(curThread)

={x}n{y}={)
DATA RACE!

Lockset Properties

* Relatively good performance (slowdowns < ~15x)
* Sound:

No warnings > data-race-free execution
* Incomplete:

Warning)é data race on execution

- thread-local data, read-shared data, etc

Per-Variable State Machine

first thread
r/w

Thread
Local

second

thread

secon
threa

any thread write
r/w

‘Shared—ré;;;;;;;;\\\\:

Track lockset

thread
MWeead

Lockset Properties

* Extensions help reduce false alarms but
- introduce (rare) unsoundnesses
- and still not complete...

boolean ready = false;
int data = 0;

Thread A Thread B
data = 42; sync (m) {
sync (m) { tmp = ready;
ready = true; }

} if (tmp)

print (data)

Dynamic Data-Race Detection

—
Vector Clocks [M 88] Happens
Goldilocks [EQT 07] Before
DJIIT+ [Isz 99,5 03] |[Lamport 78]
TRaDe [¢B 01]

Precision

Barriers [PS 03]
Initialization [vPG 01]

Eraser
[SBN+ 97]

Cost

Precise
Happens-
Before

—+
3
S
i
<
=
\IK

=3 (&)
s T3
/N

3 3
N’ <

A

<

=
]

—

N e— N —h e—W e— D — —

Ne—f O le— N e— D W e— N ——

l rel(m)

0
l acq(m)

lrel (m)

P
vol

[tmp

lacq(m) <

l rel(m)

0
l acq(m)

lr‘el (m)

P
vol

[tmp

lacq(m) <

P
P
£ £
<t | Oo|wn| =
(@) Q)
-] <
— O > N —>
\1
S e
i
- ()

1
P
vol

[tmp

lacq(m) <

0
l acq(m)

lrel (m)

P
vol

[tmp

lacq(m) <

l rel(m)

0
l acq(m)

lrel (m)

P
vol

[tmp

lacq(m) *

71415

010 0(1]0 0011
Jrel(m) l l
0|0 \o 110 001

l lacq(m) l

010 111]0 0011

l l,r‘el(m) l

010 11210 010]1

l J/vol =1 lacq(m)
010 / 3|0 1|11
l’rmp = vol l l,r'el(m)
2|0 1|3 M 1|2
lacq(m) < 1 |

2 |1 11310 1|1]2

Ve, VC,
4 (1 2 A8
A B A |B

A's local time B's local time :

VC, VCy
4 |41 218
A |[B A B

B-steps with B-time < 1
happen before
A's next step

Ve,

VC,

Write-Write Check: W,CVC, ?

3

0

4

1

? Yes

Read-Write Check: R,CVC,?

0

1

4

1

? Yes

O(n) time

VC,

L

WX RX

n
[

[

[

n

[

[

(] et ot

Write-Read Check: W, CEVC, ?

4181151112 No

O(n) time
4| g 4 410 011
"x=1
4|8 4 4|8 011

VectorClocks for Data-Race Detection
e Sound

- No warnings = data-race-free execution
* Complete

- Warning = data-race exists
* Slow performance

- (slowdowns > 50x)

Dynamic Data-Race Detection

Precision

Vector Clocks [M 88] Happens
oldilocks [EQT 07] Before
< [Lamport 78]

RaceTrack [YRC 05]
MultiRace [PS 03]
Hybrid Detector [OC 03]
Acculock [XXZ 13]
IFRit[ELCGB 12]

Initialization [vPG 0O1]

Eraser
[SBN+ 97]

Cost

Combined Approaches

* MultiRace [PS 03,07]
- Use LockSet for x
- Switch to VC if LockSet becomes empty
- (adaptive granularity as well)

* RaceTrack [YRC 05]

- Use Locket for x with extensions to Eraser
state machine.

- Use VCs to reason about fork/join and wait/
notify

Slowdown (x Base Time)

50 89.8

45 -
40 -
35 31.6
30 -
25 1 21.7
20 -
15 -

10 8.6
5 41

, N

Empty Eraser

Tools implemented
in RoadRunner

framework for
Java [PASTE 10]

20.2

MultiRace Goldilocks Basic VC

DIIT+

Dynamic Data-Race Detection

Precision

FastTrack

[Flanagan-Freund 09]

Happens

Before
[Lamport 78]

ack [YRC 05]
MultiRace [PS 03]
Hybrid Detector [OC 03]
Acculock [XXZ 13]
IFRIt[ELCGB 12]

Initialization [vPG 0O1]

Eraser
[SBN+ 97]

Cost

Dynamic Data-Race Detection

Precision

FastTrac

[Flanagan-Freund

Hyb

Barriers [P
Initialization [Vi

K for Clocks (M sa]\ 1APPens
dilocks [EQT 07] Before
Q PS 03] [Lamport 78]
* Design Criteria: \

- sound & complete
(find at least 1st data race on each var)
- efficient
* Insight:
 HB relation is a partial order

Eraser
[SBN+ 97]

* But all accesses to a var are
K almost always totally ordered /

Cost

Ve,

VC,

Write-Write Check: W,CVC, ?

3

0

4

1

? Yes

Read-Write Check: R,CVC,?

0

1

4

1

? Yes

O(n) time

Write-Write and Write-Read Data Races

Thread A Thread B Thread C Thread D

No Data Races Yet: Writes Totally Ordered

Thread A Thread B Thread C Thread D

No Data Races Yet: Writes Totally Ordered

Thread A Thread B Thread C Thread D

Q@ Q@ Q@ I
: X =3

Q
read x l >O(1)

Last Write
VG, A w, "“Epoch"

2| 8 121 I@B/

Write-Write Check: W,EVC, ?
@B |[=X|4]|1]|?2 VYes

(1 ¢ 1?)

O(1) time

Ve, VC,
4 |1 2|8
'x=0
4 |1 2 | 8
rel (m)
511 \4 8
|acqm
511 4 | 8 .
"x=1
511 4 | 8

3@A

4@A

4@A

4@A

3@B

Write-Read Check: W, & VC, ?

8@B |[=<|5]1]? No
8<1?) 0) time
* |acq(m) ;
4|8 4|1 A@A
x =1
1|8 a1]([ses

Read-Write Data Races -- Ordered Reads

Thread A Thread B Thread C Thread D

Most common case: thread-local, lock-protected, ...

Read-Write Data Races -- Unordered Reads

Thread A Thread B Thread C

VC,

read x:

T@A -
T@A -
T@A 1@B
T@A | |8

)

O(1)
O(n)

O(n)

Read-Write Check: R, ,CVC,?

8

1

8

0

? No

Thread A Thread B Thread C Thread D

? ’ ? ?

O
Q@
:
.
O

> o(n)

Thread A Thread B Thread C Thread D

? ’ ? ?

O
Q@
:
.
O

Thread A Thread B Thread C Thread D

0 0 > .

read y

Q-0 -0~ - O - - OO0~

Thread A Thread B
; ;
CFr'ead y Ir‘ead Yy
¢
?

Forget VC for R,
and switch back

to "last read epoch"

é
.

.é
.

Thread C Thread D
Q@ Q
O O
® ¢
® ?
i O
y = 10 i
> N2 ©
O

Slowdown (x Base Time)

50 89.8

45

40

3> 31.6

30

2> 21.7

20 o

15 o

o
()}

10

Empty Eraser MultiRace Goldilocks Basic VC DIIT+ FastTrack

Memory Usage
e FastTrack allocated ~200x fewer VCs

Memory
Checker Overhead
Basic VC,
DILT+ 7.9
FastTrack 2.8x
Empty 2.0x

(Note: VCs for dead objects are garbage collected)

* Improvements
- accordion clocks [CB 01]
- analysis granularity [PS 03, YRC 05]

Precise Data Race Classification for

Other Checkers

Atomizer

Velodrome

SingleTrack

mC

mF

riginal

ast Track

refilter

0 20 40 60

80

100

Average Slowdown (x base time)

and ~40% reduction in false alarms in Atomizer...

120

Eclipse 3.4

Europa
!
0205-0009
- > 6,000 classes L
/ i ic s and others, 2000, 2006, All rights reserved. J all Java-
m e trademarks or registered trademarks of Sun Microsystems,
In . or both, Eclipse is a trademark of the Eclipse Foundation, Inc.

- 24 threads
- custom sync. idioms

* Precision (tested 5 common tasks)
- Eraser: ~1000 warnings
- FastTrack: ~30 warnings

* Performance on compute-bound tasks

- > 2x speed of other precise checkers
- same as Eraser

Verifying Race Freedom with Types

class Ref Property: Each
iz‘_:di;dd(Ref o shared variable
i=4i+r.i; must be pr'oTecTed
. by a lock.

Ref x = new Ref (0);
Ref y = new Ref (3);
parallel {
sync(x,y) { x.add(y); }
sync(x,y) { x.add(y); }
}

assert x.1 ==

Verifying Race Freedom with Types

Property: Each
class Ref ({ Sh d . bl
int i guarded by this; ared variabile
void add(Ref r) requires this, r { | must be proTecTed

i=1+r.i;

} by a lock.

}

Ref x = new Ref (0);
Ref y = new Ref (3);
parallel {

sync(x,y) { x.add(y); }

sync(x) { x.add(y); } €= Error: lock y not held
}

assert x.i ==

Client-Side Locking

class Ref<ghost g> {
int i guarded by g;
void add (Ref<g> r) requires g {

i=1i+r.i;

Object m = new Object() ;
Ref<m> x = new Ref<m>(0);
Ref<m> y = new Ref<m>(3);
parallel {
sync(m) { x.add(y); }
sync(m) { x.add(y); }
}

assert x.1i == 6;

Static Race Detection In Practice

* Rcc/Java [Flanagan-Freund 00-06]
* Other Systems

- Ownership types [Boyapati et al 01]
- RacerX [Engler-Ashcraft 02]
- Chord [Naik et al 06]

- Object Use Graphs [vonPraun-Gross 03]

* Limitations
- scalability
- unsound or incomplete

Static Analysis to Optimize Dynamic Checks

Precision

RedCard + FastTrack
FastTrack [FF 09]

RaceTrack [YRC 05]
MultiRace [PS 03]
Hybrid Detector [OC 03]
Acculock [XXZ 13]
IFRIT[ELCGB 12]

Barriers [PS
Initialization [vPG 01]

Er'a%\

[SBN+ 97]

Goldilocks [EQT 07]
DJIT+ [ISZ 99,PS 03]
TRaDe [CB 01]

Cost

Happens Before
[Lamport 78]

In source code:

£ x.fCheck;

_ NoCheck .
u =yvy.g ;

Options for Skip checks
1. on race-free access.
2. that are redundant.

Release-Free Spans

|

release (m)

acquire (m)

—_— oy,
-----~
L

|

release (m) \

* Sequence of ops
by one thread

* No outgoing edges

- eg: ho releases,
forks, waits, ...

e ITf B races with C
then A races with C

* Race check on B is
redundant

RedCard: Redundant Check Elimination
[ECOOP 2013]

* Find accesses always touching memory previously
accessed within current release-free span

 Remove checks on those accesses

sync (m) { sync (m) {
t = x.f; L= ko Fast
t = x.£; || RedCard | \ t = x.puoes;) Track
=t e

* No change in precision
- No missed races
- No spurious warnings

Other Uses of Similar Notions

* Interference-Free Regions [Effinger-Dean et al 11, 12]
- compiler optimizations, imprecise race detection

* Similar optimizations for specific race
detection algorithms

- Eraser-based [vonPraun-Gross 02, Choi et al 03]
- X10 task parallelism [Raman et al 10]

e RedCard

- works with any precise race detector
- more sophisticated (but expensive) analysis
- extensions for additional forms of redundancy

Available Paths Analysis

* For each program point, compute Context

- Available Paths: expressions describing memory
previously accessed in current span

{ }
{ x.£ }

{ x.£ }

{ }
{ x.£ }

x.fisan
available path

.l.: — X.fCheCk,‘ /

t = x. fNoCheck;

rel (m) ;

t = x. fCheCk;

(for simplicity, assume no distinction between reads and writes)

Must Aliases

: : C A x.h Isan
* Include must-alias constraints in & . qilable bath
andy = x
t} x = z.gCheck,.
{Z g, X : zZ.g i }_‘y _ z.gNoCheck;
{z'gl X =2.9, Y = zg}_ti = 5 hCheck
{z.g, x.h, x = z.g, v = z.g} _té _ y . nNoChesk

* Implement via any sound decision proc. (Z3)
 Similar to type state tracking [Fink et al 08]

Redundant Array Accesses

for (int i = 0; i < a.length; i++) {

a[i]CheCk = .

}
for (int i = 0; 1 < a.length; i++) {
a[i]NoCheck =

}

.
LI 4

.
L 4

* Context extensions
- Paths for array accesses
= single: al[i]
"range: V(i € 0 to n).a[i]
- Linear inequalities

i=20;
while (i < a.length) {

i=1i4+1;

V(j € 0 to a.length) .a[j]

i =
while (i < a.length)

-

o

Loop Invariant:
V((j €0 to i).a[]j]

Inferred Via Cartesian
Predicate Abstraction
[BMMR 01, FQ 02]

i

|

/

0;

=O;

=1+ 1;

NoCheck

= 1;

i=20;
i=20 —o
while (i < a.length) {
i < a.length
V((j €0 to i).a[j] '
i < a.length
a[i]
V((j €0 to i).a[7j]

i=4i"+1)
i' < a.length
afi'] p—
V((j €0 to i').a[]j]

&

}
V(j € 0 to a.length).a[j] —

RedCard Implementation for Java

* WALA framework for Java bytecode [IBM]
- Dataflow analysis over SSA-based CFGs
- Z3 [deMoura-Bjegrner 08] to reason about Contexts

* Infers and outputs list of "NoCheck" accesses

* Two Modes
- Intra-procedural

- Inter-procedural (O-CFA, CHA)

* Analysis Time: ~18 sec per KLOC

7% of Run-time Accesses Checked

¢
%

4.
o

%
- | | | | | v

B S D N X
1IIIIIIII %,
- | | | | |

.1IIIII

...1""' ,

© O O O O O O O O O
O O N O IO & o N

100

B FastTrack ® RedCard

class Point {
private int x,y;

Proxy Fields

void move () {
o Ei . thi .Check=...;
Field y has proxy field x thi:.;NoCheck RN
if all spans accessing }

p.y also access p.x

int dot(Point o) {
If p.y has race return

. Check
then p.x has race this.x

* o.xCheck
+ thiS.YNOCheCk
e Label p.y as "NoCheck" * o, yNoCheck,
}
» Still identify all fraces int getX() {

with data races return this.xCheck;

}
}

Array Proxies

* Array element can be proxy for other elements

a[0] is proxy foralil [g|1(2[3/4]|5]|6|7

a[i div 4] isproxy foral[il |0|112|314|5|6!|7

* RedCard identifies common array proxy patterns
*b[j] is "NoCheck" if b[j] has proxy other than
itself

- may-alias info about b computed by separate
analysis

7% of Run-time Accesses Checked

100
90
80 I
70
I 1 N
- 1 N
40 1 N
. 1 N
o 1 N
0
NI P, TR N @ & @ & & R & A0 F .° S
S R ¥ &N @ PO RO N >
& (,C\ \&\0 O\b g Q’b‘ & @ &éﬁo "Q’b* \ % o \é g S \ ‘\0 QQ
OQ e Q 00.
&)

B RedCard m RedCard+Proxy

20

15

10

¥

Slowdown (x Base Time)

B FastTrack ®RedCard m RedCard+Proxy

H~ O o~ N

Geo. Mean Slowdown (x Base Time)

7.5
7.1

FastTrack RedCard RedCard + Proxy

Where To 6o From Here?

e Static Race Checking Analysis
* Performance (goal is always-on precise detection...)
- HW support
- static-dynamic hybrid analyses
- sampling
* Coverage
- symbolic model checking, specialized schedulers

* Classify malignant/benign data races
- which data races are most critical?

* How to respond to data races? warn/fail-fast/recover?

* Reproducing traces exhibiting rare data races
- record and replay

* Generalization: reason about traces beyond the observed
trace

Key References

Hans-J. Boehm and Sarita V. Adve, "You Don't Know Jack About
Shared Variables or Memory Models", CACM 2012.

Leslie Lamport, "Time, Clocks, and the Ordering of Events in a
Distributed System", CACM 1978.

Martin Abadi, Cormac Flanagan, and Stephen N. Freund, "Types
for Safe Locking: Static Race Detection for Java", TOPLAS
2006.

Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg
Nelson, James B. Saxe, and Raymie Stata. "Extended static
checking for Java", PLDI 2002.

S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. E.
Anderson, "Eraser: A dynamic data race detector for multi-
threaded programs", TOCS 1997.

Key References

Friedemann Mattern, "Virtual Time and Global States of
Distributed Systems", Workshop on Parallel and Distributed
Algorithms 1989.

Yuan Yu, Tom Rodeheffer, and Wei Chen, "RaceTrack: Efficient
detection of data race conditions via adaptive tracking", SOSP
2005.

Eli Pozniansky and Assaf Schuster, "MultiRace: Efficient on-the-fly
data race detection in multithreaded C++ programs", Concurrency
and Computation: Practice and Experience 2007.

Robert O'Callahan and Jong-Deok Choi, "Hybrid Dynamic Data Race
Detection", PPOPP 2003.

Cormac Flanagan and Stephen N. Freund, "FastTrack: efficient and
precise dynamic race detection", CACM 2010.

Cormac Flanagan and Stephen N. Freund, "The RoadRunner dynamic
analysis framework for concurrent programs", PASTE 2010.

Key References

* Cormac Flanagan and Stephen N. Freund, "Adversarial memory for
detecting destructive races", PLDI 2010.

e Cormac Flanagan and Stephen N. Freund, "RedCard: Redundant
Check Elimination for Dynamic Race Detectors", ECOOP 2013.

Jumble: Diagnosing Bad Races

e FastTrack finds real race conditions
- races correlated with defects

- cause unintuitive behavior, especially on
relaxed memory models

- but some are intentional/benign...

* Which race conditions are real bugs?
- that cause erroneous behaviors (crashes, etc)
- and are not "benign race conditions”

Controlling Scheduling Non-Determinism

e lhread A
_>e _ .
e p = new Pt();
—® p = null;
racy —®
Large read e Thread B
Concurrent —>9
APPli%a‘rion :pr e a1l
—>® .draw () ;
Input —>® P
—e
—e
_>e
—e

(eg: CalFuzzer)

Adversarial Memory [PLDI 2010]

Large
Concurrent
Application

F212121

]

Input

2TR12T:

Adversarial
memory exploits
memory
nondeterminism.

Racy read
sees old value
likely to crash
application.

complements
schedule-based
approaches, quite
effective.

Adversarial Memory [PLDI 2010]
Thread A

e
— _ .
e p = new Pt();
::: p = null;
Large Y, Thread B
Concurrent _®
Application T
T if p !'= null
.draw () ;
Input P

2TR12T:

Sequentially Consistent Memory Model

int x = 10; * Intuitive memory model
x = 0; » Each read sees most recent write
fork{ if (x !'= 0) x = 50/x; } * (No memory caches)
x = 42;
Q Px = 10
x =10
<=0 x =0
fork fork
x = 42
r = x ® Pr =x
r 1= O? r = 0?
r = X
x = 42 r = 50/r
(‘_’) X =r
5

Jumble

int x = 10; Record:
x = 0; .
fork{ if (x 1= 0) x = s0/x; 3 * Write buffer for racy vars
x = 42; * happens-before relation
P« = 10 < notvisible At each read:
x =0 <— visible « determine visible writes
fork » return old writes to crash app
|X = 42\ < visible with higher probability than
@ typical memory impl.
| r = x
: r '= 07
i B heuristically pick O

r
(,,)x = r division by zero

Jumble Precision: failures out of 100 runs

Benchmark: racy field Julr\ln(ljole SC | Oldest E)L:lesé Random R;)ellﬂcij?frp
montecarlo: DEBUG 0 0 0 0 0 0
mtrt: threadCount 0 0 0 0 0 0
point: p 0 0 0 0 0 0
point: x 0 0 60 52 32 30
point: y 0 0 48 53 27 30
jbb: elapsed_time 0 0 100 0 15 5
jbb: mode 0 0 100 100 95 98
raytracer:.checksum1 0 0 100 100 100 100
sor: arrays 0 0 100 100 100 100
lufact: arrays 0 0 100 100 100 100
moldyn: arrays 0 0 100 100 100 100
tsp: MinTourLen 0 0 100 100 100 100

- 27 racy fields (found with FastTrack)
- ran Jumble manually once for each field
R - found 4 destructive races

tors and others, 2000, 2006, All rights reserved and all Java
are tr r registered tradem: i

ipse

Europa

arks of Sun Microsystem:
both. Eclipse is a trademark of the Eclipse Foundation, Inc

Student Contributors

e Jaeheon Yi, UC Santa Cruz (now at Google)

e Caitlin Sadowski, UC Santa Cruz (now at Google)
 Tom Austin, UC Santa Cruz (now at San Jose State)
e Tim Disney, UC Santa Cruz

* Ben Wood, Williams College (now at Wellesley College)

* Diogenes Nunez, Williams College (now at Tufts)

e Antal Spector-Zabusky, Williams College (now at UPenn)
e James Wilcox, Williams College (now at UW)

* Parker Finch, Williams College

e Emma Harrington, Williams College

Approximating Redundancy

e Record execution trace

* Annotate accesses in source based on dynamic
occurrences in trace.

sync (m) { ie line i
Yt - (NonRedundant €] Check on this line is
. Z necessary at least

_ Redundant .
t =x.f ; once.
{:. . v. fRedundant; o |
} Check on this line is
_ gNonRedundant, always redundant.

Approximating Redundancy

e Record execution trace

* Annotate accesses in source based on dynamic
occurrences in trace.

sync (m) { sync (m) {
£ = x. fNonRedundant; £ = x. fCheck;
£ = x. fRedundant; £ = x. fNoCheck;
1.: = y. fRedundant; t = y. fCheck;

} }

£ = x. fNonRedundant; £ = x. fCheck;

e Compare to RedCard annotations
— NoCheck Accesses C Redundant Accesses

7% of Run-time Accesses Checked Using RedCard
100

90
80
70
60
50
40
30
20
10

o)

o >

(o O o
é*Q \'b \8\ °$ (O’é {
N G &
& G

B Dynamically NonRedundant Dyn. Redundant But Checked

QY

Where To Go From Here?

e Static Race Checking Analysis
* Performance (goal is always-on precise detection...)
- HW support
- static-dynamic hybrid analyses
- sampling
e Coverage
- symbolic model checking, specialized schedulers
e Classify malignant/benign data races
- which data races are most critical?
* How to respond to data races? warn/fail-fast/recover?
* Reproducing traces exhibiting rare data races
- record and replay

* Generalization
- reasoh about traces beyond the observed trace

Increasing Redundancy

* Unroll first iteration of loops [Choi et al 03]

i=20;
if (i < N) {
p.fCheCk.m();
for (1 = 1; i < N; i++)
P. fNoCheck.m() ;

for (1 = 0; i < N; i++) :r\V

p.fCheCk.m() ;

* Other transformations:
- method specialization
- redundant synchronization elimination

7% of Run-time Accesses Checked

100
90
80
70
60
50
40
30
20
10

M RedCard m RedCard+Proxy RedCard+Proxy w/ Unrolling

20

15

10

Slowdown (x Base Time)

i5

>

Q¢

& g

B FastTrack mRedCard M RedCard+Proxy i RedCard+Proxy w/ Unrolling

H~ O o~ N

Geo. Mean Slowdown (x Base Time)
7.5

FastTrack

7.1

RedCard

6.4

RedCard RedCard + Proxy
+ Proxy w/ Unrolling

