
Analysis Techniques to
Detect Concurrency Errors
Cormac Flanagan
UC Santa Cruz

Stephen Freund
Williams College

Lecture Goals
! Enforcing concurrency properties

–  facilitates reasoning about correctness
–  race freedom, atomicity, determinism,

cooperability
! Static and dynamic analyses

–  design space
–  implementation techniques
–  limitations

! Open research questions

Concurrent Programming Models
! Shared memory and explicit threads / sync

! Others
–  message passing, transactions, ...

…

…

… …

Unshared:
locals and

control flow

Shared:
objects and
static fields

pc

pc pc

Deterministic Parallelism

Bank
Server

Non-Deterministic Concurrency

Open Research Problems
! Making concurrency/parallelism readily

accessible to all programmers

! Developing programming models beyond shared
memory

! How to write efficient multithreaded code

! How to write correct multithreaded code

Thread Interference: Data Races
! Concurrent conflicting accesses

–  Two threads read/write, write/read, or write/
write the same location without intervening
synchronization

Thread A
...
t1 = bal;
bal = t1 + 10;
...

Thread B
...
t2 = bal;
bal = t2 – 10;
...

bal = t1 + 10

t1 = bal

bal = t2 - 10

t2 = bal

Thread A Thread B

Thread A
...
t1 = bal;
bal = t1 + 10;
...

Thread B
...
t2 = bal;
bal = t2 – 10;
...

bal = t1 + 10

t1 = bal

bal = t2 - 10

t2 = bal

Thread A Thread B

Thread Interference: Data Races
! Concurrent conflicting accesses

–  Two threads read/write, write/read, or write/
write the same location without intervening
synchronization

Thread Interference: Atomicity Violations

Thread A
...
acq(m);
t1 = bal;
rel(m);

acq(m);
bal = t1 + 10;
rel(m);

Thread B
...
acq(m);
bal = 0
rel(m);

acq(m)

acq(m)

bal = 0

acq(m)

Thread A Thread B

t1 = bal

rel(m)

rel(m)

bal = t1 + 10

rel(m)

Thread Interference: Ordering Violations

Thread B
 t.perform();
 ...

Thread A
 ...
 t = null;
 fork(Thread B)
 t = new Task()

t = null

t.perform()

Thread A Thread B

fork(Thread B)

t = new Task()

...

Thread Interference: Unintended Sharing

void work() {
 static int local = 0;
 local++;
 ...
}

Thread B
work();

Thread A
work();

 local = t1+1

t1 = local

local = t2+1

t2 = local

Thread A Thread B

Thread Interference: Deadlock
class Account {
 int bal;
 synchronized void deposit(int n) { bal = bal + n; }

 synchronized void transfer(Account other, int n) {
 other.deposit(n);
 this.deposit(-n);
 }
}

Thread B
b.transfer(a,10);

Thread A
a.transfer(b,10);

 acq(a)

acq(b)

Thread A Thread B

Data Race Detection

! Atomicity violations

! Ordering violations

! Unintended sharing

! Deadlocks and livelocks

races are
often

a symptom
of these

errors

Thread A
...
t1 = bal;
bal = t1 + 10;
...

Thread B
...
t2 = bal;
bal = t2 – 10;
...

bal = t1 + 10

t1 = bal

bal = t2 - 10

t2 = bal

Thread A Thread B

Thread Interference: Atomicity Violation

Thread Interference: Ordering Violations

Thread B
 t.perform();
 ...

Thread A
 ...
 t = null;
 fork(Thread B)
 t = new Task()

t = null

t.perform()

Thread A Thread B

fork(Thread B)

t = new Task()

...

Thread Interference: Unintended Sharing

void work() {
 static int local = 0;
 local++;
 ...
}

Thread B
work();

Thread A
work();

 local = t1+1

t1 = local

local = t2+1

t2 = local

Thread A Thread B

Are All Race Conditions Errors?
! Implementing flag synchronization

! Implementing fast reads

 boolean done = false;

x = 1;
done = true;

 if (done) t = x;

Thread A Thread B

 int bal = 0;

synchronized (m) {
 bal = bal + n;
}

 t = bal;

Thread A Thread B

Are All Race Conditions Errors?
! Implementing flag synchronization

! Implementing fast reads

–  Treated as “synchronization”
–  Documents potential sharing
–  Improves program semantics
–  In C++: std::atomic<> types

 volatile boolean done = false;

x = 1;
done = true;

 if (done) t = x;

Thread A Thread B

 volatile int bal = 0;

synchronized (m) {
 bal = bal + n;
}

 t = bal;

Thread A Thread B

! Each processor/core has a cache
! When do writes to x become visible to other

processors (threads)?

Data Races and Memory Models

Memory Models
! Sequential Consistency

–  Operations by threads are interleaved in some
global sequential order.

–  A read yields the value most recently written
to that location according to this order.

–  Simple, intuitive

Java Example

x = 10;
y = 20;

r1 = y;
r2 = x;
print r1 + r2;

Thread A Thread B

int x;
int y;
Initially x == y == 0;

What’s Printed? 30? 20? 10? 0?

Memory Models
! Sequential Consistency

–  Operations by threads are interleaved in some
global sequential order.

–  A read yields the value most recently written
to that location according to this order.

! Relaxed Models (JMM, x86-TSO, etc.)
– writes may be buffered in caches
– more than one value written to x may be visible
– necessary for hardware performance
– (also enables compiler optimizations)

Example
int x = 0;
boolean done = false;

x = 10;
done = true;

while (!done) { }
print x;

Thread A Thread B

int x = 0;
volatile boolean done = false;

x = 10;
done = true;

while (!done) { }
print x;

Thread A Thread B

Why Look For Races?
! Programmers make errors leading to data races:

–  Missing locking
–  Missing "volatile" annotations
–  ...

! Must know about races to reason about any
more sophisticated concurrency property

! Memory Model Guarantee:
–  Data-Race Freedom " Seq. Consistent Behavior

Data Race Detection
! Automated Tools to Find Data Races

–  Active area of research for > 20 years
–  More than 100 academic papers on the subject

! Key dimensions of the design space are not

unique to data-race detection
–  type-checking
–  array-bounds
–  pointer errors
–  etc.

Static Data Race Detection

! Advantages:
–  Reason about all inputs/interleavings
–  No run-time overhead
–  Adapt well-understood static-analysis techniques
–  Annotations to document concurrency invariants

! Example Tools:
–  RCC/Java type-based
–  CHESS state exploration
–  ESC/Java "functional verification"

 (theorem proving-based)

Static Data Race Detection

! Advantages:
–  Reason about all inputs/interleavings
–  No run-time overhead
–  Adapt well-understood static-analysis techniques
–  Annotations to document concurrency invariants

! Disadvantages of static:
–  Undecidable...
–  Tools produce “false positives” or “false negatives”
–  May be slow, require programmer annotations
–  May be hard to interpret results

Dynamic Data Race Detection
! Advantages

–  Can avoid “false positives”
–  No need for language extensions or

sophisticated static analysis

! Disadvantages
–  Run-time overhead (5-20x for best tools)
–  Memory overhead for analysis state
–  Reasons only about observed executions

#  sensitive to test coverage
#  (some generalization possible...)

Dynamic Analysis Design Space
! Soundness

–  every actual data race is reported
! Completeness

–  all reported warnings are actually races
! Coverage

–  generalize to additional traces?
! Overhead

–  run-time slowdown
–  memory footprint

! Programmer overhead

Overview of Analysis Techniques
! Lamport's Happens-Before Relation [Lamport 78]

–  enables precise definition of data race

! Four points in design space
1.  LockSet
2.  Vector Clocks
3.  Hybrid LockSet/VC
4.  FastTrack

x = 0

rel(m)

acq(m)

x = 1

y = x

Thread A Thread B Happens-Before
! Event Ordering:

–  program order
–  synchronization order
–  transitivity

! Types of Data Races:
–  Write-Write
–  Write-Read

#  (write then read)
–  Read-Write

#  (read then write)

...

rel(m)

acq(m)

rel(m)

acq(m)

rel(m)

vol = 1

tmp = vol

acq(m)

fork 2

join 2

...

Dynamic Data Race Detection
Pr

ec
is

io
n

Cost

Happens
 Before

[Lamport 78]

Eraser
[SBN+ 97]

•  Compute partial order of operations
•  Ensure conflicting operations are not unordered
•  Sound & Complete
•  (No Trace Generalization)

Dynamic Data Race Detection
Pr

ec
is

io
n

Cost

Happens
 Before

[Lamport 78]

Eraser
[SBN+ 97]

•  Enforce consistent locking discipline
 (each variable is protected by a lock)
•  Unsound & Incomplete
•  Some trace generalization

Approximating Happens-Before
! Track lockset for each memory location

–  LockSet(x): set of locks held on all accesses to
location x

! If m ✌ LockSet(x): If LockSet(x) is empty:

x = 0
...
rel(m)

acq(m)
...
t = x

x = 0
...

...
t = x

! First access to o.f:
 LockSet(o.f) := Held(curThread)
 = { x, y }

Thread B
synchronized(y) {
 o.f = 2;
}

Lockset Example

Thread A
synchronized(x) {
 synchronized(y) {
 o.f = 2;
 }
 o.f = 11;
}

! Subsequent access to o.f:
 LockSet(o.f) := LockSet(o.f) ∩ Held(curThread)
 = { x, y } ∩ { x } = { x }

Lockset Example

Thread B
synchronized(y) {
 o.f = 2;
}

Thread A
synchronized(x) {
 synchronized(y) {
 o.f = 2;
 }
 o.f = 11;
}

! Subsequent access to o.f:
 LockSet(o.f) := LockSet(o.f) ∩ Held(curThread)
 = { x } ∩ { y } = { }
 DATA RACE!

Lockset Example

Thread B
synchronized(y) {
 o.f = 2;
}

Thread A
synchronized(x) {
 synchronized(y) {
 o.f = 2;
 }
 o.f = 11;
}

Lockset Properties
! Relatively good performance (slowdowns < ~15x)
! Sound:

 No warnings à data-race-free execution
! Incomplete:

 Warning à data race on execution

–  thread-local data, read-shared data, etc

Per-Variable State Machine

Thread
Local

Read
Shared

Shared-exclusive
Track lockset

first thread
r/w

any thread
read any thread

write

any thread
r/w

Shared-read/write
Track lockset

second
thread
read second

thread
write

Lockset Properties
! Extensions help reduce false alarms but

–  introduce (rare) unsoundnesses
–  and still not complete...

boolean ready = false;
int data = 0;

data = 42;
sync(m) {
 ready = true;
}

sync(m) {
 tmp = ready;
}
if(tmp)
 print(data)

Thread A Thread B

Dynamic Data-Race Detection
Pr

ec
is

io
n

Cost

Happens
 Before

[Lamport 78]

Eraser
[SBN+ 97]

Barriers [PS 03]
Initialization [vPG 01]

...

Vector Clocks [M 88]
 Goldilocks [EQT 07]
DJIT+ [ISZ 99,PS 03]

TRaDe [CB 01]
...

1

2

3

4

5 5

1

2

3

4

5

4

3

2

1

6 6 6

rel(m)

acq(m)

rel(m)

acq(m)

rel(m)

7 7 7

vol = 1

tmp = vol

acq(m)

Precise
Happens-
Before

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0 1 5 0

0 1 0

0 2 0

1 3 0

1 4 0

1 3 5

0 0 4

0 0 3

0 0 2

0 0 1

6 4 0 1 6 0 1 3 6

rel(m)

acq(m)

rel(m)

acq(m)

rel(m)

7 4 5 1 7 0 1 3 7

vol = 1

tmp = vol

acq(m)

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0 1 5 0

0 1 0

0 2 0

1 3 0

1 4 0

1 3 5

0 0 4

0 0 3

0 0 2

0 0 1

6 4 0 1 6 0 1 3 6

rel(m)

acq(m)

rel(m)

acq(m)

rel(m)

7 4 5 1 7 0 1 3 7

vol = 1

tmp = vol

acq(m)

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0 1 5 0

0 1 0

0 2 0

1 3 0

1 4 0

1 3 5

0 0 4

0 0 3

0 0 2

0 0 1

6 4 0 1 6 0 1 3 6

rel(m)

acq(m)

rel(m)

acq(m)

rel(m)

7 4 5 1 7 0 1 3 7

vol = 1

tmp = vol

acq(m)

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0 1 5 0

0 1 0

0 2 0

1 3 0

1 4 0

1 3 5

0 0 4

0 0 3

0 0 2

0 0 1

6 4 0 1 6 0 1 3 6

rel(m)

acq(m)

rel(m)

acq(m)

rel(m)

7 4 5 1 7 0 1 3 7

vol = 1

tmp = vol

acq(m)

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0 1 5 0

0 1 0

0 2 0

1 3 0

1 4 0

1 3 5

0 0 4

0 0 3

0 0 2

0 0 1

6 4 0 1 6 0 1 3 6

rel(m)

acq(m)

rel(m)

acq(m)

rel(m)

7 4 5 1 7 0 1 3 7

vol = 1

tmp = vol

acq(m)

1 0 0

2 0 0

2 0 0

2 0 0

2 0 0 1 3 0

0 1 0

0 1 0

1 1 0

1 2 0

1 1 1

0 0 1

0 0 1

0 0 1

0 0 1

2 2 0 1 3 0 1 1 2

rel(m)

acq(m)

rel(m)

acq(m)

rel(m)

2 2 1 1 3 0 1 1 2

vol = 1

tmp = vol

acq(m)

4 1 2 8 2 1 3 0

VCA VCB Lm Wx

0 1

Rx

A B A B A B A B A B

A’s local time B’s local time

4 1 2 8 2 1 3 0

VCA VCB Lm Wx

0 1

Rx

A B A B A B A B A B

B-steps with B-time ≤ 1
happen before
A’s next step

x = 0

4 1

4 0

2 8

0 8

2 1 3 0

VCA VCB Lm Wx

0 0 4 0

0 1

Rx

2 0

4 8 5 0 4 8 2 0

Write-Write Check: Wx VCA ?

Read-Write Check: Rx VCA ?

4 1 3 0

4 1 0 1

? Yes

? Yes

O(n) time

x = 0

4 1

4 1

2 8

2 8

2 1 3 0

VCA VCB Lm Wx

2 1 4 0

0 1

Rx

0 1

x = 0

rel(m)

4 1

5 1

4 1

2 8

2 8

2 8

2 1 3 0

VCA VCB Lm Wx

2 1 4 0

4 1 4 0

0 1

Rx

0 1

0 1

x = 0

rel(m)

acq(m)

4 1

5 1

4 1

5 1

2 8

2 8

2 8

4 8

2 1 3 0

VCA VCB Lm Wx

2 1 4 0

4 1 4 0

4 1 4 0

0 1

Rx

0 1

0 1

0 1

x = 0

rel(m)

acq(m)

x = 1

4 1

5 1

4 1

5 1

5 1

2 8

2 8

2 8

4 8

4 8

2 1 3 0

VCA VCB Lm Wx

2 1 4 0

4 1 4 0

4 1 4 0

4 1 4 8

0 1

Rx

0 1

0 1

0 1

0 1

x = 0

rel(m)

x = 1

y = x

4 1

5 1

4 1

5 1

5 1

0 8

0 8

0 8

4 8

4 8

0 0 0 0

VCA VCB Lm Wx

0 0 4 0

4 0 4 0

4 1 4 0

4 1 4 8

2 0

Rx

2 0

2 0

0 1

0 1

Write-Read Check: Wx VCA ?

5 1 ? No 4 8

O(n) time

VectorClocks for Data-Race Detection
! Sound

–  No warnings $ data-race-free execution
! Complete

–  Warning $ data-race exists
! Slow performance

–  (slowdowns > 50x)

Dynamic Data-Race Detection
Pr

ec
is

io
n

Cost

Happens
 Before

[Lamport 78]

Eraser
[SBN+ 97]

Barriers [PS 03]
Initialization [vPG 01]

...

Vector Clocks [M 88]
 Goldilocks [EQT 07]
DJIT+ [ISZ 99,PS 03]

TRaDe [CB 01]
...

 RaceTrack [YRC 05]
 MultiRace [PS 03]

 Hybrid Detector [OC 03]
 Acculock [XXZ 13]
 IFRit[ELCGB 12]

Combined Approaches
! MultiRace [PS 03,07]

–  Use LockSet for x
–  Switch to VC if LockSet becomes empty
–  (adaptive granularity as well)

! RaceTrack [YRC 05]

–  Use Locket for x with extensions to Eraser
state machine.

–  Use VCs to reason about fork/join and wait/
notify

Slowdown (x Base Time)

4.1

8.6

21.7

31.6

89.8

20.2

8.5

0

5

10

15

20

25

30

35

40

45

50

Empty Eraser MultiRace Goldilocks Basic VC DJIT+ FastTrack

Tools implemented
in RoadRunner
framework for
Java [PASTE 10]

Dynamic Data-Race Detection
Pr

ec
is

io
n

Cost

Happens
 Before

[Lamport 78]

Eraser
[SBN+ 97]

Barriers [PS 03]
Initialization [vPG 01]

...

Vector Clocks [M 88]
 Goldilocks [EQT 07]
DJIT+ [ISZ 99,PS 03]

TRaDe [CB 01]
...

 RaceTrack [YRC 05]
 MultiRace [PS 03]

 Hybrid Detector [OC 03]
 Acculock [XXZ 13]
 IFRit[ELCGB 12]

FastTrack
[Flanagan-Freund 09]

Dynamic Data-Race Detection
Pr

ec
is

io
n

Cost

Happens
 Before

[Lamport 78]

Eraser
[SBN+ 97]

Barriers [PS 03]
Initialization [vPG 01]

...

Vector Clocks [M 88]
 Goldilocks [EQT 07]
DJIT+ [ISZ 99,PS 03]

TRaDe [CB 01]
...

 RaceTrack [YRC 05]
 MultiRace [PS 03]

 Hybrid Detector [OC 03]
 Acculock [XXZ 13]
 IFRit[ELCGB 12]

FastTrack
[Flanagan-Freund 09]

•  Design Criteria:
-  sound & complete
 (find at least 1st data race on each var)
-  efficient

•  Insight:
•  HB relation is a partial order
•  But all accesses to a var are
 almost always totally ordered

x = 0

4 1

4 0

2 8

0 8

2 1 3 0

VCA VCB Lm Wx

0 0 4 0

0 1

Rx

2 0

4 8 5 0 4 8 2 0

Write-Write Check: Wx VCA ?

Read-Write Check: Rx VCA ?

4 1 3 0

4 1 0 1

? Yes

? Yes

O(n) time

Thread A Thread B Thread C Thread D

x = 0

x = 1

read x

x = 3

Write-Write and Write-Read Data Races

?

?

?

O(n)

Thread A Thread B Thread C Thread D

x = 0

x = 1

read x

x = 3

No Data Races Yet: Writes Totally Ordered

?

?

?

O(n)

Thread A Thread B Thread C Thread D

x = 0

x = 1

read x

x = 3

No Data Races Yet: Writes Totally Ordered

?

O(1)

x = 0

4 1

4 0

2 8

0 8

2 1 1@B

VCA VCB Lm Wx

0 0 4@A Write-Write Check: Wx VCA ?

 4 1 ? Yes 1@B

(1 ≤ 1?)

O(1) time

Last Write
"Epoch"

x = 0

rel(m)

acq(m)

x = 1

4 1

5 1

4 1

5 1

5 1

2 8

2 8

4 8

4 8

4 8

2 1 3@A

VCA VCB Lm Wx

2 1 4@A

4 1 4@A

4 1 4@A

4 1 8@B

x = 0

rel(m)

acq(m)

x = 1

y = x

4 1

5 1

4 1

5 1

5 1

0 8

0 8

4 8

4 8

4 8

0 0 3@A

VCA VCB Lm Wx

0 0 4@A

4 0 4@A

4 1 4@A

4 1 8@B

Write-Read Check:

5 1 ? No 8@B

Wx VCA ?

O(1) time (8 ≤ 1?)

Thread A Thread B Thread C Thread D

read x

read x

x = 2

read x

Read-Write Data Races -- Ordered Reads

?

Most common case: thread-local, lock-protected, ...

Thread A Thread B Thread C

read x read x

x = 2

read x

Read-Write Data Races -- Unordered Reads

?

fork

? ?

x = 0

x = 0
-

VCA VCB Wx Rx

7 0

fork
7@A 7 0

7 1 7@A 8 0

read x
7 1 7@A 8 0

7@A 8 0
x = 2

read x

8 1

-

-

-

1@B
O(1)

O(n)

Read-Write Check: Rx VCA ?

8 0 8 1 ? No

O(n)

Thread A Thread B Thread C Thread D

read y

y = 10

read y

? ?

O(n)

Thread A Thread B Thread C Thread D

read y

y = 10

read y

Thread A Thread B Thread C Thread D

read y

y = 10

read y

y = 3

?

O(n)

?

?

Thread A Thread B Thread C Thread D

read y

y = 10

read y

y = 3

?

Forget VC for Rx
and switch back

to "last read epoch"

O(1)

Slowdown (x Base Time)

4.1

8.6

21.7

31.6

89.8

20.2

8.5

0

5

10

15

20

25

30

35

40

45

50

Empty Eraser MultiRace Goldilocks Basic VC DJIT+ FastTrack

! FastTrack allocated ~200x fewer VCs

(Note: VCs for dead objects are garbage collected)

! Improvements
–  accordion clocks [CB 01]
–  analysis granularity [PS 03, YRC 05]

Checker Memory
Overhead

Basic VC,
DJIT+ 7.9x

FastTrack 2.8x
Empty 2.0x

Memory Usage

0 20 40 60 80 100 120

SingleTrack

Velodrome

Atomizer
Original

FastTrack
Prefilter

Average Slowdown (x base time)

Precise Data Race Classification for
Other Checkers

and ~40% reduction in false alarms in Atomizer…

Eclipse 3.4
! Scale

–  > 6,000 classes
–  24 threads
–  custom sync. idioms

! Precision (tested 5 common tasks)
–  Eraser: ~1000 warnings
–  FastTrack: ~30 warnings

! Performance on compute-bound tasks
–  > 2x speed of other precise checkers
–  same as Eraser

Verifying Race Freedom with Types

class Ref {
 int i;
 void add(Ref r) {
 i = i + r.i;
 }
}

Ref x = new Ref(0);
Ref y = new Ref(3);
parallel {
 sync(x,y) { x.add(y); }
 sync(x,y) { x.add(y); }
}
assert x.i == 6;

Property: Each
shared variable
must be protected
by a lock.

Verifying Race Freedom with Types

class Ref {
 int i guarded_by this;
 void add(Ref r) requires this, r {
 i = i + r.i;
 }
}

Ref x = new Ref(0);
Ref y = new Ref(3);
parallel {
 sync(x,y) { x.add(y); }
 sync(x) { x.add(y); }
}
assert x.i == 6;

Error: lock y not held

Property: Each
shared variable
must be protected
by a lock.

Client-Side Locking

class Ref<ghost g> {
 int i guarded_by g;
 void add(Ref<g> r) requires g {
 i = i + r.i;
 }
}

Object m = new Object();
Ref<m> x = new Ref<m>(0);
Ref<m> y = new Ref<m>(3);
parallel {
 sync(m) { x.add(y); }
 sync(m) { x.add(y); }
}
assert x.i == 6;

Static Race Detection In Practice
! Rcc/Java [Flanagan-Freund 00-06]
! Other Systems

–  Ownership types [Boyapati et al 01]
–  RacerX [Engler-Ashcraft 02]
–  Chord [Naik et al 06]
–  Object Use Graphs [vonPraun-Gross 03]

! Limitations
–  scalability
–  unsound or incomplete

Pr
ec

is
io

n

Cost

Happens Before
[Lamport 78]

Vector Clocks
[M 88]

Eraser
[SBN+ 97]

Barriers [PS 03]
Initialization [vPG 01]

...

Goldilocks [EQT 07]
DJIT+ [ISZ 99,PS 03]

TRaDe [CB 01]
...

 RaceTrack [YRC 05]
 MultiRace [PS 03]

 Hybrid Detector [OC 03]
 Acculock [XXZ 13]
 IFRit[ELCGB 12]

 ...

FastTrack
[FF 09]

...
t = x.fCheck;
...
u = y.gNoCheck;
...

In source code:

Options for Skip checks:
1.  on race-free access.
2.  that are redundant.

RedCard +
FastTrack

Static Analysis to Optimize Dynamic Checks

t = x.f

t = x.f

...

x.f = 1

...
(cannot exist)

release(m)

release(m)

acquire(m)

...

B:

A:

C:

Release-Free Spans
! Sequence of ops

by one thread

! No outgoing edges

–  eg: no releases,
forks, waits, ...

! If B races with C
then A races with C

! Race check on B is
redundant

RedCard: Redundant Check Elimination
[ECOOP 2013]
! Find accesses always touching memory previously

accessed within current release-free span
! Remove checks on those accesses

! No change in precision

–  No missed races
–  No spurious warnings

Fast
Track RedCard

sync(m) {
 t = x.f;
 t = x.f;
}
t = x.f

sync(m) {
 t = x.fCheck;
 t = x.fNoCheck;
}
t = x.fCheck;

Other Uses of Similar Notions
! Interference-Free Regions [Effinger-Dean et al 11, 12]

–  compiler optimizations, imprecise race detection
! Similar optimizations for specific race

detection algorithms
–  Eraser-based [vonPraun-Gross 02, Choi et al 03]
–  X10 task parallelism [Raman et al 10]

! RedCard
–  works with any precise race detector
–  more sophisticated (but expensive) analysis
–  extensions for additional forms of redundancy

Available Paths Analysis
! For each program point, compute Context

–  Available Paths: expressions describing memory
previously accessed in current span

t = x.fCheck;

t = x.fNoCheck;

rel(m);

t = x.fCheck;

x.f is an
available path { }

{ x.f }

{ x.f }

{ }

{ x.f }

(for simplicity, assume no distinction between reads and writes)

Must Aliases
! Include must-alias constraints in Context

! {

! Implement via any sound decision proc. (Z3)
! Similar to type state tracking [Fink et al 08]

x.h is an
available path

and y = x

x = z.gCheck;

y = z.gNoCheck;

t1 = x.hCheck;

t2 = y.hNoCheck;

{z.g, x.h, x = z.g, y = z.g}

{z.g, x = z.g, y = z.g}

{z.g, x = z.g }

{}

Redundant Array Accesses

! Context extensions
–  Paths for array accesses

#  single: a[i]
#  range: ∀(i ∊ 0 to n).a[i]

–  Linear inequalities

for (int i = 0; i < a.length; i++) {
 a[i]Check = ...;
}
for (int i = 0; i < a.length; i++) {
 a[i]NoCheck = ...;
}

i = 0;
while (i < a.length) {
 a[i]Check = 0;
 i = i + 1;
}

a[k]NoCheck = 1;

∀(j ∊ 0 to a.length).a[j]

i = 0;
while (i < a.length) {
 a[i]Check = 0;
 i = i + 1;
}

a[k]NoCheck = 1;

∀(j ∊ 0 to a.length).a[j]

Loop Invariant:

∀(j ∊ 0 to i).a[j]

Inferred Via Cartesian

Predicate Abstraction
[BMMR 01, FQ 02]

i = 0;

while (i < a.length) {

 a[i]Check = 0;

 i = i + 1;

}

a[k]NoCheck = 1;

i = 0

 i < a.length
∀(j ∊ 0 to i).a[j]

 i < a.length

a[i]
∀(j ∊ 0 to i).a[j]

 i = i'+1

i' < a.length
a[i']

∀(j ∊ 0 to i').a[j]

∀(j ∊ 0 to a.length).a[j]

RedCard Implementation for Java
! WALA framework for Java bytecode [IBM]

–  Dataflow analysis over SSA-based CFGs
–  Z3 [deMoura-Bjørner 08] to reason about Contexts

! Infers and outputs list of "NoCheck" accesses

! Two Modes

–  Intra-procedural
–  Inter-procedural (0-CFA, CHA)

! Analysis Time: ~18 sec per KLOC

0

10

20

30

40

50

60

70

80

90

100
% of Run-time Accesses Checked

FastTrack RedCard

Proxy Fields

! Field y has proxy field x
if all spans accessing
p.y also access p.x

If p.y has race
then p.x has race

! Label p.y as "NoCheck"

! Still identify all traces
with data races

class Point {
 private int x,y;

 void move() {
 this.xCheck = ...;
 this.yNoCheck = ...;
 }

 int dot(Point o) {
 return
 this.xCheck
 * o.xCheck

 + this.yNoCheck
 * o.yNoCheck;
 }

 int getX() {
 return this.xCheck;
 }
}

Array Proxies
! Array element can be proxy for other elements

! RedCard identifies common array proxy patterns
! b[j] is "NoCheck" if b[j] has proxy other than

itself
–  may-alias info about b computed by separate

analysis

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

a[0] is proxy for a[i]

a[i div 4] is proxy for a[i]

0

10

20

30

40

50

60

70

80

90

100
% of Run-time Accesses Checked	

RedCard RedCard+Proxy

0

5

10

15

20

Slowdown (x Base Time)

FastTrack RedCard RedCard+Proxy

35

7.5
7.1

5.7

0

1

2

3

4

5

6

7

8
Geo. Mean Slowdown (x Base Time)

FastTrack RedCard RedCard + Proxy

Where To Go From Here?
! Static Race Checking Analysis
!  Performance (goal is always-on precise detection...)

–  HW support
–  static-dynamic hybrid analyses
–  sampling

! Coverage
–  symbolic model checking, specialized schedulers

! Classify malignant/benign data races
–  which data races are most critical?

! How to respond to data races? warn/fail-fast/recover?
! Reproducing traces exhibiting rare data races

–  record and replay
! Generalization: reason about traces beyond the observed

trace

Key References
!  Hans-J. Boehm and Sarita V. Adve, "You Don't Know Jack About

Shared Variables or Memory Models", CACM 2012.
!  Leslie Lamport, "Time, Clocks, and the Ordering of Events in a

Distributed System", CACM 1978.
!  Martin Abadi, Cormac Flanagan, and Stephen N. Freund, "Types

for Safe Locking: Static Race Detection for Java", TOPLAS
2006.

!  Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg
Nelson, James B. Saxe, and Raymie Stata. "Extended static
checking for Java", PLDI 2002.

!  S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. E.
Anderson, "Eraser: A dynamic data race detector for multi-
threaded programs", TOCS 1997.

Key References
!  Friedemann Mattern, "Virtual Time and Global States of

Distributed Systems", Workshop on Parallel and Distributed
Algorithms 1989.

!  Yuan Yu, Tom Rodeheffer, and Wei Chen, "RaceTrack: Efficient
detection of data race conditions via adaptive tracking", SOSP
2005.

!  Eli Pozniansky and Assaf Schuster, "MultiRace: Efficient on-the-fly
data race detection in multithreaded C++ programs", Concurrency
and Computation: Practice and Experience 2007.

!  Robert O'Callahan and Jong-Deok Choi, "Hybrid Dynamic Data Race
Detection", PPOPP 2003.

!  Cormac Flanagan and Stephen N. Freund, "FastTrack: efficient and
precise dynamic race detection", CACM 2010.

!  Cormac Flanagan and Stephen N. Freund, "The RoadRunner dynamic
analysis framework for concurrent programs", PASTE 2010.

Key References
!  Cormac Flanagan and Stephen N. Freund, "Adversarial memory for

detecting destructive races", PLDI 2010.
!  Cormac Flanagan and Stephen N. Freund, "RedCard: Redundant

Check Elimination for Dynamic Race Detectors", ECOOP 2013.

Jumble: Diagnosing Bad Races

! FastTrack finds real race conditions
–  races correlated with defects
–  cause unintuitive behavior, especially on

relaxed memory models
–  but some are intentional/benign...

! Which race conditions are real bugs?
–  that cause erroneous behaviors (crashes, etc)
–  and are not “benign race conditions”

Controlling Scheduling Non-Determinism

racy
read

 (eg: CalFuzzer)

Large
Concurrent
Application

Input

p = new Pt();
...
p = null;

...
if p != null
 p.draw();

Thread A

 Thread B

Adversarial
memory exploits
memory
nondeterminism.

Racy read
sees old value
likely to crash
application.

complements
schedule-based
approaches, quite
effective.

racy
read

Adversarial Memory [PLDI 2010]

Large
Concurrent
Application

Input

racy
read

Adversarial Memory [PLDI 2010]

Large
Concurrent
Application

Input

p = new Pt();
...
p = null;

...
if p != null
 p.draw();

Thread A

 Thread B

Sequentially Consistent Memory Model
•  Intuitive memory model
•  Each read sees most recent write
•  (No memory caches)

int x = 10;
x = 0;
fork{ if (x != 0) x = 50/x; }
x = 42;

x = 10
x = 0
fork

x = 42

r = x
r != 0?

x = 10
x = 0
fork
x = 42

r = x
r != 0?
r = x
r = 50/r
x = r

Jumble
Record:
•  write buffer for racy vars
•  happens-before relation

heuristically pick 0

division by zero

not visible

visible

visible
x = 10
x = 0
fork
x = 42

r = x
r != 0?
r = x

r = 50/r
x = r

int x = 10;
x = 0;
fork{ if (x != 0) x = 50/x; }
x = 42;

At each read:
•  determine visible writes
•  return old writes to crash app
 with higher probability than
 typical memory impl.

Jumble Precision: failures out of 100 runs

–  27 racy fields (found with FastTrack)
–  ran Jumble manually once for each field
–  found 4 destructive races

Benchmark: racy field No
Jumble SC Oldest Oldest

but diff Random Random
but diff

 montecarlo: DEBUG
 mtrt: threadCount
 point: p
 point: x
 point: y
 jbb: elapsed_time
 jbb: mode
 raytracer:checksum1
 sor: arrays
 lufact: arrays
 moldyn: arrays
 tsp: MinTourLen

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

 0
 0
 0
 60
 48
 100
 100
 100
 100
 100
 100
 100

 0
 0
 0
 52
 53
 0
 100
 100
 100
 100
 100
 100

 0
 0
 0
 32
 27
 15
 95
 100
 100
 100
 100
 100

 0
 0
 0
 30
 30
 5
 98
 100
 100
 100
 100
 100

Student Contributors
!  Jaeheon Yi, UC Santa Cruz (now at Google)
!  Caitlin Sadowski, UC Santa Cruz (now at Google)
!  Tom Austin, UC Santa Cruz (now at San Jose State)
!  Tim Disney, UC Santa Cruz

!  Ben Wood, Williams College (now at Wellesley College)
!  Diogenes Nunez, Williams College (now at Tufts)
!  Antal Spector-Zabusky, Williams College (now at UPenn)
!  James Wilcox, Williams College (now at UW)
!  Parker Finch, Williams College
!  Emma Harrington, Williams College

Approximating Redundancy
! Record execution trace
! Annotate accesses in source based on dynamic

occurrences in trace.

sync(m) {
 t = x.fNonRedundant;
 t = x.fRedundant;
 ...
 t = y.fRedundant;
}
t = x.fNonRedundant;

Check on this line is
always redundant.

Check on this line is
necessary at least

once.

Approximating Redundancy
! Record execution trace
! Annotate accesses in source based on dynamic

occurrences in trace.

! Compare to RedCard annotations

– NoCheck Accesses Redundant Accesses

sync(m) {
 t = x.fCheck;
 t = x.fNoCheck;
 ...
 t = y.fCheck;
}
t = x.fCheck;

sync(m) {
 t = x.fNonRedundant;
 t = x.fRedundant;
 ...
 t = y.fRedundant;
}
t = x.fNonRedundant;

0

10

20

30

40

50

60

70

80

90

100
% of Run-time Accesses Checked Using RedCard

Dynamically NonRedundant Dyn. Redundant But Checked

Where To Go From Here?
! Static Race Checking Analysis
!  Performance (goal is always-on precise detection...)

–  HW support
–  static-dynamic hybrid analyses
–  sampling

! Coverage
–  symbolic model checking, specialized schedulers

! Classify malignant/benign data races
–  which data races are most critical?

! How to respond to data races? warn/fail-fast/recover?
! Reproducing traces exhibiting rare data races

–  record and replay
! Generalization

–  reason about traces beyond the observed trace

Increasing Redundancy

! Unroll first iteration of loops [Choi et al 03]

! Other transformations:
–  method specialization
–  redundant synchronization elimination
–  ...

for (i = 0; i < N; i++)
 p.fCheck.m();

i = 0;
if (i < N) {
 p.fCheck.m();
 for (i = 1; i < N; i++)
 p.fNoCheck.m();
}

0

10

20

30

40

50

60

70

80

90

100
% of Run-time Accesses Checked	

RedCard RedCard+Proxy RedCard+Proxy w/ Unrolling

0

5

10

15

20

Slowdown (x Base Time)

FastTrack RedCard RedCard+Proxy RedCard+Proxy w/ Unrolling

35

7.5
7.1

5.7
6.4

0

1

2

3

4

5

6

7

8
Geo. Mean Slowdown (x Base Time)

FastTrack RedCard RedCard
 + Proxy

RedCard + Proxy
w/ Unrolling

