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Introductions...



Tutorial Goals

- What is (and is not) a data race
- State of the art techniques in dynamic data race detection
- Implementation insights

- Open research problems



Tutorial Structure

- Background

- Lockset and Happens-before Algorithms

- FastTrack — In Depth

 Implementation Frameworks

- RoadRunner — In Depth

- DataCollider — Sampling for Data-race Detection

- Advanced Schedule Perturbation
* Cuzz

« Adversarial Memory Models



BACKGROUND




Concurrency vs Parallelism

Concurrency Parallelism
Manage access to shared Use extra resources to solve a
resources, correctly and problem faster
efficiently

Task
Task Task Task ‘/l\
Sub Sub Sub
Task Task Task

Resource Reso Reso Reso
urce urce urce

Sometimes, creating parallelism
will create concurrency



e
Threads and Shared Memory

-« Common programming model
 For dealing with parallelism and concurrency

- Tasks vs Threads
- Subtly different abstractions
- Threads are usually managed by the operating system
- Tasks are lightweight, and are usually provided by the language runtime

- Data races can occur
* In both threads and task based programming
- When dealing with both parallelism and concurrency



Moore’s law

make computers faster

Moore’s law
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Open Research Problems

- Make concurrency and parallelism accessible to all
« Other Programming models

-« How to write efficient multi-threaded code

- How to write correct multi-threaded code_ T ttond



First things First
Assigning Semantics to Concurrent Programs

intX=F=0;

X 1; t F;
F 15 u X5

- What does this program mean?

- Sequential Consistency [Lamport ‘79]
Program behavior = set of its thread interleavings



Sequential Consistency Explained

int X=F=0; //F=1implies X is initialized

X = 1;
t=Fl | F =15 lu=-X8 |x-1 u = X8 F=1;
u=X; lu=xal |F -1 F=1; F=1; u = X;
t=1, u=1 t=0, u=1 t=0, u=1 t=0, u=0 t=0, u=1 t=0, u=1

=
—

t=1 implies u=1



Naturalness of Sequential Consistency

- Sequential Consistency provides two crucial abstractions

« Program Order Abstraction
« Instructions execute in the order specified in the program

A;:B
means “Execute A and then B”

- Shared Memory Abstraction
- Memory behaves as a global array, with reads and writes done immediately

- We implicitly assume these abstractions for sequential programs



In this Tutorial

- We will assume Sequential Consistency

- Except when explicitly stated otherwise



Common Concurrency Errors

- Atomicity violations
- Ordering violations
- Unintended sharing

- Deadlocks and livelocks



Atomicity Violation

- Code that is meant to execute “atomically”
- That is, without interference from other threads

- Suffers interference from some other thread

Thread 1 Thread 2
void Bank::Update(int a) | void Bank::Withdraw(int a)
{ : {
int t = bal; - int t = bal;
bal = t + a; : bal = t - a; |
} } |
. iy




L
Ordering Violation

- Incorrect signalling between a producer and a consumer

Thread 1

work = null; :
CreateThread (Thread 2);—
work = new Work();

—> Thread 2

ConsumeWork( work );




L
Unintended Sharing

- Threads accidentally sharing objects

Thread 1

void work() {
static int local = ©;

local += ..

Thread 2

void work() {
static int local = ©;

local += ..




L
Deadlock / Livelock

4 N\ 4 N
Thread 1 Thread 2
AcquireLock( X ); | AcquireLock( Y );
AcquireLock( Y ); | AcquirelLock( X );




L
Deadlock / Livelock

Init
X:y:@;

4 N\ 4 )
Thread 1 | Thread 2
while (x == @) {} | while (y == @) {}

y = 1; | X = 1;




Common Concurrency Errors

- Atomicity violations

Data Race is a
good symptom for
these

- Ordering violations < (

- Unintended sharing

- Deadlocks and livelocks



WHAT IS A DATA RACE ?




- The term “data race” is often overloaded to mean different
things

- Precise definition is important in designing a tool



Data Race

- Two accesses conflict if
- they access the same memory location, and

- at least one of them is a write
Write X — Write X
Write X — Read X
Read X — Write X
Read X — Read X

- A data race is a pair of conflicting accesses that happen
concurrently



“Happen Concurrently”

- A and B happen concurrently if

- there exists a sequentially consistent execution in which they
happen one after the other

X =1; t = F;
F = 1; u = X;
X = 1;
F = a8 Happen
Concurrently
T = B8



L
Unintended Sharing

- Threads accidentally sharing objects

Thread 1

void work() {
static int local = ©;

local += ..

Data Race

Thread 2

void work() {
static int local = ©;

local += ..




Atomicity Violation

- Code that is meant to execute “atomically”
- That is, without interference from other threads

- Suffers interference from some other thread

Thread 1 : Thread 2
void Bank::Update(int a) | void Bank::Withdraw(int a)
{ | {
int t = bal; int t = bal;
bal = t + a; t - a;
}
-y

Data Race




L
Ordering Violation

- Incorrect signalling between a producer and a consumer

Thread 1

work = null; |
CreateThread (Thread 2);—
work = new Work(); T Thread 2

‘\\\\\\ : ConsumelWork( work );

Data Race



L
But....

4 5 4 N
AcquireLock(){ | Releaselock() {
while (lock == 1) {} lock = 0;
CAS (lock, @, 1); | }
}
N,

Data Race ?




Acceptable Concurrent Conflicting Accesses

- Implementing synchronization (such as locks) usually requires
concurrent conflicting accesses to shared memory

- Innovative uses of shared memory
* Fast reads
- Double-checked locking
- Lazy initialization
- Setting dirty flag

- Need mechanisms to distinguish these from erroneous
conflicts



Solution: Programmer Annotation

- Programmer explicitly annotates variables as “synchronization”
- Java — volatile keyword
« C++ —std::atomic<> types



Data Race

- Two accesses conflict if
- they access the same memory location, and
- at least one of them is a write

- A data race is a pair of concurrent conflicting accesses to
locations not annotated as synchronization



Data Race vs Race Conditions

- Data Races != Race Conditions
- Confusing terminology

- Race Condition
- Any timing error in the program
- Due to events, device interaction, thread interleaving, ...

- Data races are neither sufficient nor necessary for a race
condition
- Data race is a good symptom for a race condition



DATA-RACE-FREEDOM SIMPLIFIES
LANGUAGE SEMANTICS




L
Advantage of Annotating All Data Races

- Defining semantics for concurrent programs becomes
surprisingly easy

- In the presence of compiler and hardware optimizations



L
Can A Compiler Do This?

= X*5; L1: t = X*5;
=Y; S L2: u =Y,
= X*5; L3: v = t;

t,u,v are local variables

OK for sequential programs X.Y are possibly shared

if X is not modified between L1 and L3



Can Break Sequential Consistent Semantics

possiblyu==1&&v==0

Data Race




L
Can A Compiler Do This?

L1: t = X*5;
T L2: u =Y;
L3: v = t;

t,u,v are local variables

OK for sequential programs X.Y are possibly shared

if X is not modified between L1 and L3

OK for concurrent programs
if there is no data race on X or
if there is no data raceon Y



L
Key Observation [Adve& Hill '90 ]

- Many sequentially valid (compiler & hardware)
transformations also preserve sequential consistency

- Provided the program is data-race free

- Forms the basis for modern C++, Java semantics
data-race-free = sequential consistency
otherwise =2 weak/undefined semantics



L
A Quiz

- Can the assertion fire in this C++ program?

( )

main

bool dirty = false;
// Create threads T1,T2

( Thread T1 N [ Thread T2 k
void f() void f()
{ | {
dirty = true; : dirty = true;
) )

// Wait for T1,T2 to finish

assert (dirty);




DATA RACE DETECTION




Overview of Data Race Detection Techniques

- Static data race detection

- Dynamic data race detection
- Lock-set
- Happen-before

- DataCollider



Static Data Race Detection

- Advantages:
- Reason about all inputs/interleavings
» No run-time overhead
- Adapt well-understood static-analysis techniques
- Annotations to document concurrency invariants

- Example Tools:
- RCC/Java type-based

- ESC/Java "functional verification"
(theorem proving-based)



Static Data Race Detection

- Advantages:
- Reason about all inputs/interleavings
» No run-time overhead
- Adapt well-understood static-analysis techniques
- Annotations to document concurrency invariants

- Disadvantages of static:
- Undecidable...
- Tools produce “false positives” or “false negatives”
- May be slow, require programmer annotations
- May be hard to interpret results



Dynamic Data Race Detection

- Advantages
- Can avoid “false positives”
- No need for language extensions or sophisticated static analysis

- Disadvantages
« Run-time overhead (5-20x for best tools)
- Memory overhead for analysis state
- Reasons only about observed executions

« sensitive to test coverage
* (some generalization possible...)



Tradeoffs: Static vs Dynamic

- Coverage
- generalize to additional traces?

- Soundness
- every actual data race is reported
- Completeness

- all reported warnings are actually races

 Overhead
* run-time slowdown
+ memory footprint

- Programmer overhead



L
Definition Refresh

- A data race is a pair of concurrent conflicting accesses to
unannotated locations

X =1; t = F;
F =1; u = X;
X =1;
F = 1§ Happen
Concurrentl

- Problem for dynamic data race detection
- Very difficult to catch the two accesses executing concurrently



Solution

- Lockset
- Infer data races through violation of locking discipline

- Happens-before

- Infer data races by generalizing a trace to a set of traces with the same
happens-before relation

- DataCollider
- Insert delays intelligently to force the data race to occur



LOCKSET ALGORITHM

Eraser [Savage et.al. ‘97]



Lockset Algorithm Overview

- Checks a sufficient condition for data-race-freedom
- Consistent locking discipline
- Every data structure is protected by a single lock
- All accesses to the data structure made while holding the lock

« Example:
// Remove a received packet RecvQueue is
AcquireLock( RecvQueuelk ); consistently protected
pkt = RecvQueue.Removerupyy, by RecvQueuelk

ReleaselLock( RecvQueuelk );

.. // process pkt

// Insert into processed
AcquireLock( ProcQueuelk );
ProcQueue.
ReleaselLock( ProcQueuelk );

ProcQueue is
consistently protected
by ProcQueuelLk




Inferring the Locking Discipline

- Solution: Infer from the program

- How do we know which lock protects what?
AcquireLock( A ),
AcquireLock( B

- Asking the programmer is cumbersome
X is protected by
A, or B, or both
X ++;

Releaselock( B ); __{ X is protected }

ReleaselLock( A ); by B
X is protected by
B, or C, or both

AcquireLock(
AcquireLock(
X >
ReleaselLock( C );
ReleaselLock( B );




L
LockSet Algorithm

- Two data structures:

+ LocksHeld( t ) = set of locks held currently by thread t
+ Initially set to Empty

- LockSet( x ) = set of locks that could potentially be protecting x
+ Initially set to the universal set

- When thread t acquires lock |

- LocksHeld( t )=LocksHeld( t )U{/}
- When thread t releases lock |

« LocksHeld( t )=LocksHeld( t ) —{/}

- When thread t accesses location x
- LockSet( x )= LockSet( x )NLocksHeld( t)

- Report “data race” when LockSet( x ) becomes empty



Algorithm Guarantees

- No warnings = no data races on the current execution
- The program followed consistent locking discipline in this execution

- Warnings does not imply a data race
- Thread-local initialization

// Initialize a packet
pkt = new Packet();
pkt.Consumed = @

AcquireLock( SendQueuelLk );

pkt = SendQueue.Top();

ReleaselLock( SendQueuelk ); géqﬁgﬁgﬁzzk? EZEESEeueLk );

pkt = SendQueue.Top();
pkt.Consumed = 1;
ReleaselLock( SendQueuelLk );



LockSet Algorithm Guarantees

- No warnings = no data races on the current execution
- The program followed consistent locking discipline in this execution

- Warnings does not imply a data race
- Object read-shared after thread-local initialization

new
=) @;

AC)s

el

A
A.
// publish A

PR = b f = globalA.f;



Maintain A State Machine Per Location

Thread T
Read /

Thread T’

Read Any Thread

Read

Any Thread
Write

Any Thread
Write

Shared
Any Thread v
Read / Write
Run LockSet Algorithm



LockSet Algorithm Guarantees

- State machine misses some data races

// Initialize a packet
pkt = new Packet();
pkt.Consumed = 0;

AcquireLock( WrongLk );

pkt = SendQueue.Top();

pkt.Consumed = 1; // Process a packet

ReleaselLock( WronglLk ); AcquireLock( SendQueuelk );
pkt = SendQueue.Top();
pkt.Consumed = 1;
ReleaselLock( SendQueuelk );



LockSet Algorithm Guarantees

- Does not handle locations consistently protected by different
locks during a particular execution

// Remove a received packet Pkt is protected by
AcquireLock( RecvQueuelk ); RecvQueuelk

pkt = RecvQueue.RemoveTop();
ReleaselLock( RecvQueuelk );

4——~_______-__~__———~_J/

L Pkt is thread local

.. // process pkt

// Insert into processed

AcquirelLock( ProcQueuelk );

ProcQueue.Insert(pkt);
ReleaselLock( ProcQueuelk ); Pkt is protected by
ProcQueuelLk




HAPPENS-BEFORE




Happens-Before Relation [Lamport '78]

- A concurrent execution is a partial-order determined by communication
events

- The program cannot “observe” the order of concurrent non-communicating
events

Releaselock Releaselock

‘>D AcquireLock AcquireLock
xX++
yrk x++



e
Happens-Before Relation [Lamport '78]

- A concurrent execution is a partial-order determined by communication

events

- The program cannot “observe” the order of concurrent non-communicating

events

Releasel.ock

xX++

- Both executions form the same happens-before relation

) 4

Q

Acquirelock

y++

Releasel.ock

X++

v

AcquireLlock

y++



Constructing the Happens-Before Relation

- Program order

- Total order of thread teleaselock
instructions
- Synchronization order AcquireLock
- Total order of accesses to the
same synchronization é x++
Releasel.ock
) 4
x++
)

AcquireLock



Happens-Before Relation And Data Races

If all conflicting accesses are
ordered by happens-before

— data-race-free execution

— All linearizations of partial-order
are valid program executions

If there exists conflicting accesses
not ordered

—> a data race

Releaselock

x++

AcquireLock

AcquirelLock

‘¢

Releaselock




Happens-Before and Data-Races

- Not all unordered conflicting accesses are data races

=1)J

Init: X=Y =0;
if(
X

- But, there is a dataraceonY

>
i
=

n <
N I

- There is no data race on X

- Remember:
- Exists unordered conflicting access = Exists data race



IMPLEMENTING HAPPENS-
BEFORE ANALYSES




Dynamic Data-Race Detection

—
Vector Clocks [M 88] Happens
Goldilocks [EQT 07] Before
DJIIT+ [Isz 99,5 03] |[Lamport 78]
TRaDe [¢B 01]

Precision

Barriers [PS 03]
Initialization [vPG 01]

Eraser
[SBN+ 97]

Cost
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A's next step
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VectorClocks for Data-Race Detection
e Sound

- No warnings = data-race-free execution

* Complete
- Warning = data-race exists

e Performance
- slowdowns > 50x
- memory overhead

79



Dynamic Data-Race Detection

Precision

Happens

Before
[Lamport 78]

Vector Clocks [M 88]

RaceTrack [YRC 05]
MultiRace [PS 03]
Hybrid Race Detector [OC 03]

Initialization

Eraser
[SBN+ 97]

Cost



Combined Approaches

e MultiRace [PS 03,07]
- Begin with LockSet for x
- Switch to VC for x if LockSet becomes empty
- (adaptive granularity as well)

e RaceTrack [YRC 05]

- Use LockSet for x and extended Eraser state
machine.

- Use VCs to reason about fork/join and wait/
notify



Slowdown (x Base Time)

50 89.8

45

40

35

31.6
30

2> 21.7

20 o

15 o

o
()}

10

Empty Eraser  MultiRace Goldilocks Basic VC DIIT+



FASTTRACK




Dynamic Data-Race Detection

Precision

FastTrack

[Flanagan-Freund 09]

RaceTrack [YRC 05]
MultiRace [PS 03]
Hybrid Race Detector [OC 03]

Initialization

Eraser
[SBN+ 97]

Happens

Before
[Lamport 78]

Cost




Dynamic Data-Race Detection

Precision

FastTrac

[Flanagan-Freund

Hybrid

Barrier:
Initialization

0 -

for Clocks (M sa]\  1APPens
EQT 07] Before

s 03] |[Lamport 78]

k

/

Design Criteria:
- sound & complete

- efficient
* Insight:
 HB relation is a partial order

Eraser
[SBN+ 97]

» But all accesses to a var are

(find at least 1st data race on each var)

~

K almost always totally ordered /

Cost



Ve,

VC,

Write-Write Check: W,CVC, ?

3

0

4

1

? Yes

Read-Write Check: R,CVC,?

0

1

4

1

? Yes

O(n) time




Write-Write and Write-Read Data Races

Thread A Thread B Thread C Thread D




No Data Races Yet: Writes Totally Ordered

Thread A Thread B Thread C Thread D




No Data Races Yet: Writes Totally Ordered

Thread A Thread B Thread C Thread D

@ Q @ I
s s s x =3




Last Write
VG, A w, "“Epoch"

2| 8 121 I@B/

Write-Write Check: W,EVC, ?
@B |[=X|4]|1]|?2 VYes

(1 ¢ 1?)

O(1) time
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Write-Read Check: W, & VC, ?

8@B |[=<|5]1]? No
8<1?)  0) time
* |acq(m) ;
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x =1
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Read-Write Data Races -- Ordered Reads

Thread A Thread B Thread C Thread D

Most common case: thread-local, lock-protected, ...



Read-Write Data Races -- Unordered Reads

Thread A Thread B Thread C




VC,

read x:

T@A -
T@A -
T@A 1@B
T@A | |8
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8
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8

0

? No




Thread A Thread B Thread C Thread D
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Slowdown (x Base Time)
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Memory Usage
e FastTrack allocated ~200x fewer VCs

Memory
Checker Overhead
Basic VC,
DILT+ 7.9
FastTrack 2.8x
Empty 2.0x

(Note: VCs for dead objects are garbage collected)

* Improvements
- accordion clocks [CB 01]
- analysis granularity [PS 03, YRC 05]



Precise Data Race Classification for
Other Checkers
| |

® Original

Atomizer

M FastTrack
Prefilter

Velodrome

SingleTrack

0 20 40 60 80 100 120
Average Slowdown (x base time)

and ~40% reduction in false alarms in Atomizer...



Eclipse 3.4

Europa
!
0205-0009
- > 6,000 classes L
/ i ic s and others, 2000, 2006, All rights reserved. J all Java-
m e trademarks or registered trademarks of Sun Microsystems,
In . or both, Eclipse is a trademark of the Eclipse Foundation, Inc.

- 24 threads
- custom sync. idioms

* Precision (tested 5 common tasks)
- Eraser: ~1000 warnings
- FastTrack: ~30 warnings

* Performance on compute-bound tasks

- > 2x speed of other precise checkers
- same as Eraser



IMPLEMENTATION
FRAMEWORKS




Building a Dynamic Data Race Detector

- ldentify synchronization

- Instrument callbacks
- At synchronization operations
« At memory operations

- Implement a data race detection algorithm
- Report data races with debugging information



Desigh Considerations

- Performance overhead

- Tolerance to false positives
« Coverage

- Debuggability



Performance Overhead

- Why is overhead important?



Performance Overhead

- Why is overhead important?
- Tests take longer

- Interaction with timing behavior

- Databases will trigger deadlock-recovery if transactions don’t finish in X
ms



Back of the Envelope Calculation

- ~ One in five instructions is a memory operation
- ~ One in two memory operation is to a non-stack location

- Data race detector is called every 10 instructions
- On every callback,

- Need to perform at least one memory lookup to access the
metadata

 Synchronization to avoid data races (!) on metadata

- And, we need some cycles to run the algorithm
- =» OVERHEAD



False Positives

- False Data Races

« A “bug” in the algorithm

 Lockset will report a race if program does not follow a consistent lock
discipline

- A “bug” in the tool
« don’t cover all synchronizations
- Benign Data Races
- Data Races that don’t trigger assertion violations
« Prone to memory model issues

* Need to prove to the user that this data race can cause a problem
under some memory model



Coverage

- Given an trace, does the tool find
- All data races
« The first data race

» Can the tool find data races in other “related” traces?

- Happens-before algorithm finds all data races in traces with the same
happens-before ordering of synchronization as the original

- |s it acceptable to miss data races?



e
Debuggability

- So, you have found a data race, now what?

- Need to collect stack trace information
« For one thread?
« For both threads?

- Tools usually find tons of data races instances

- Need a good method to group data race reports



Building a Dynamic Data Race Detector

- ldentify synchronization

- Instrument callbacks
- At synchronization operations
« At memory operations

- Implement a data race detection algorithm
- Report data races with debugging information



L
ldentifying Synchronization

- Thread synchronization
- Locks, semaphores, condition variables,...

- Volatile/Atomic accesses

- Memory model specifies these as “synchronization”
» Not recognizing them will report lots of benign data races

* Interprocess Communication



Example of IPC over threads

Thread A
X ++,

send_pipe();  ~__

\\\\\\\\\\\\iThread B
Happens-before recv_pipe();

X ++,




Failure to handle = False Data Race

Thread A
X ++,

send_pi:§?7>\\\\\\
Thread B
recv_pipe();

False Data Race! X+,




Data Race ?

Thread A

X ++,

malloc();
Thread B
malloc();

X ++,




Data Race ?

- Not, if you consider internal details of malloc()

Thread A
X ++;
malloc(){
lock(); Thread B
. malloc(){
unlock(); slock();
} Happens-before anlock( s
}
X ++;




Instrumenting Callbacks

» At Source
- Compiler optimizes your instrumentation
- Need good happens-before specification for third-party (library) binaries

At Binary
« More expensive instrumentation
- Handle (and find data races in) libraries



Processing Callbacks

* Online
- Run the data-race detection algorithm at runtime
» Expensive processing
- At least find one access in the action

- Offline
- Log the events, and process them later
- Lightweight processing
* Log management is an issue



ROADRUNNER




Binary Instrumentation

* Atom, Vulcan, ASM, SOOT, Valgrind, PIN, ...
(or modifying a VM)
* Can be difficult to build robust/efficient tools
- Expose most features of actual hardware
- Complex details of underlying machine
= object layout, addressing modes, thread impl.
- Hard to optimize instrumentation code
- Large start-up cost
* Other issues
- Portability
- Comparisons between tools



RoadRunner [Flanagan-Freund 10]

1. A general framework to facilitate
- writing
- composing
- debugging
- comparing
dynamic analyses for multithreaded code
2. Efficient for Java, without changing JVM

* Implemented >30 analyses in RoadRunner

- Performance competitive with analysis-specific
implementations built from scratch

- And with implementations in Jikes RVM [Bond et al]



Using RoadRunner Checking Tools
e Single Checker:

rrrun -tool=LockSet Target
rrrun -tool=FastTrack Target

rrrun -tool=HappensBefore Target

* Composed Checkers:

rrrun -tool=Threadlocal:ReadOnly:LockSet Target
rrrun -tool=ThreadLocal:ReadOnly:LockSet:Atomizer Target
rrrun -tool=FastTrack:Atomizer Target

* Diagnostic Tools:

rrrun -tool=Threadlocal:Print Target

rrrun -tool=FastTrack:Count:Atomizer Target



RoadRunner

Size

Tools (lines) Description
Empty 35 "No Op" Back End
Print 170 Print synch / memory ops
ThreadLocal 48 Local vs. Shared Data
LockSet [SBN97] 327
DJIT+ [PS 07] 582
MultiRace [PS 07] 923 Race Conditions
Goldilocks [EQT 07] 1,416
FastTrack [FF 09] 758
Atomizer [FF 04] 245 Serializability
Velodrome [FFY 08] 1,088
SingleTrack [SFF 09] 1,655 Deterministic Parallelism
Jumble [FF 10] 1,326 Adversarial Memory
SideTrack [YSF 09] 500 Trace generalization




Architecture

(c B\
Standard JVM RoadRunmer -
A . ) Stream (» Back-End
Instrumented L Monitor | A: acq(m) L Tool
BYTeCOde A: read(x)
— B: write(y)
ﬁ gbs’rr'ac‘l' STG% A: ::i (:)y { Back End }
Tbol
=
Instrumenter Back End
[ ] \ / { Tbol }
\ S %
i

Java Error: race on x...
Bytecode

Others: Sofya [KDR 07], CalFuzzer JNPS 09]



Tool API (Without Composition)

* Tool specifies:
- handlers for synchronization / access events
- data to store about abstract program state

abstract class Tool {
void create (NewThreadEvent e)
void acquire (AcquireEvent e)
void release (ReleaseEvent e)

void access (AccessEvent e)



RR Abstract State

Shadow Threads Shadow Vars for locations

0.X a[1]

Thread 1 Thread 2




RR Abstract State: LockSet

Shadow Threads Shadow Vars for locations
0.X a[l]
Thread 1 Thread 2
{m} {mn}

{m} {}




Decorations for Shadow Threads

* Maps with constant-time operations
- Creation:

Decoration<ShadowThread,LSet> held =
ShadowThread.makeDecoration (LSet.empty()) ;

- Usage:

LSet 1s = held.get(thread);
held.set (thread, ls.add(lock)) ;

* Values kept in small array stored in Key objects



Variable Shadows for Locations

* Different requirements
- orders of magnitude more locations & uses
- performance critical
- decoration overhead too large

* RR stores single ShadowVar value for each loc.

* Tool specifies value for fresh location:

ShadowVar makeShadowVar (AccessEvent e) {
return held.get (e.thread);



Event Stream

class AcquireEvent {
AcquirelInfo info;
ShadowThread thread;
ShadowLock 1lock;

}

class AccessEvent {
AccessInfo info;
ShadowThread thread;

ShadowVar shadow;

boolean putShadow (ShadowVar var)

update ShadowVar
stored for location



LockSet Handlers

public void acquire (AcquireEvent e) ({
LSet l1ls = held.get(e.thread)
held.set (e.thread, ls.add(e.lock));

public void access (AccessEvent e) ({
LSet locks = (LSet)e.shadow;
LSet held = held.get(e.thread) ;
LSet newlocks = locks.intersect (held);
e .putShadow (newLocks) ;
if (newLocks.isEmpty()) {
error (e.info) ;



RR Abstract State: HappensBefore

Shadow Threads

Thread 1

Thread 2

Shadow Vars

0.X

a[1]

[3.2]

[4.2]

[1.11]

Shadow Locks

m

[3.2]

[19]




RR Abstract State: ThreadLocal

Shadow Threads

Thread 1

Thread 2

Shadow Vars

0.X

Shared

Shadow Locks

m

a[1]

Thread 2




Tool API (With Composition)

abstract class Tool {

Tool next;

void create (NewThreadEvent e) next.create(e) ;
void acquire (AcquireEvent e) next.acquire (e) ;

void release (ReleaseEvent e) next.release (e) ;

e T e T e N .}

}
}
}
}

void access (AccessEvent e) next.access (e) ;

}

* Every Tool:
- must pass all sync events to next
- can filter out access events



Composed Tools: "ThreadLocal:LockSet"

Shadow Threads

Thread 1

Thread 2

Shadow Vars

0.X

{m}

a[1]

{m}

{}

Shared

Shadow Locks

m

Thread 2




ShadowVar Ownership

Shadow Threads Shadow Vars
0.X a[1]
Thread 1 Thread 2 { m } Thread 2
{m} {}
Shadow Locks * Still keep a single ShadowVar for
each location
a * Type indicates current owner

* Tool explicitly passes ownership to
next tool in chain




public void acquire (AcquireEvent e) {
LSet 1ls = held.get(e.thread) ;
held.set (e.thread, ls.add(e.lock));

public void access (AccessEvent e) {
LSet locks = (LSet)e.shadow;
LSet held = held.get(e.thread) ;
LSet newLocks = locks.intersect (held);
e.putShadow (newLocks) ;
if (newLocks.isEmpty()) {
error (e.info) ;



public void acquire (AcquireEvent e) {
LSet 1ls = held.get(e.thread) ;
held.set (e.thread, ls.add(e.lock));

next.acquire (e) ;

public void access (AccessEvent e) {

if (! (e.shadow instanceof Set)) {
next.access (e) ; // Not owner

} else {
LSet locks = (LSet)e.shadow;
LSet held = held.get(e.thread) ;
LSet newLocks = locks.intersect (held) ;
e.putShadow (newLocks) ;
if (newLocks.isEmpty()) {

error (e.info); this.advance (e) ;



Performance

Tool Slowdown
(x base time)

Empty 5.6
Eraser 94
(=ThreadLocal:ReadOnly:LockSet)

Eraser:RedundantSync:Atomizer 98
FastTrack 7.3
FastTrack:Velodrome 8.1

* Memory Overhead: at least 2x, due to ShadowVars

* Running times are competitive with analysis-specific
checkers built from scratch




Implementation: ShadowVar State

class C {
int x;
int y;

(9]
™
T
¥

AN

shadow x

Y

shadow y

int a[] = ...,
al[2] = 3;

[O]

-

[1]

[2]

a
|
I
|
|
I
|

Y

-

2. ConcurrentHashMap

Array-To-Shadow Map\

1. per-thread inline cache [ _ _ 5

\3. WeakHashMap "A’r’ric"/

shadow [0O]

shadow [1]

shadow [2]




Implementation: Event Handling

* Thread performing operation executes handler

* Avoiding data races on ShadowVar for location:
- serialize event stream
- tool-provided synchronization
- optimistic updates

public void access (AccessEvent e) {
LSet held = held.get(e.thread) ;
do {
LSet locks = (LSet)e.shadow;
LSet newLocks = locks.intersect (held) ;
} while (!'e.putShadow (newLocks)) ;



Implementation: Optimizations

*Leverage JIT

* Event Object Reuse

* Array-To-Shadow Map
* Fast Path Inlining

- most access events handled without modifying
state or using full event info

- RoadRunner inlines these "fast paths"

boolean readFP (ShadowVar v, ShadowThread cur) {
return v == held.get (cur)

&& ' ((LSet)v) .isEmpty () ;



Perspective

The 6o0d Rough Edges
* JIT works great * JIT is moving target...

* Efficient & Scalable  * Further scalability
- Eclipse, dacapo (mostly),... - mitigate memory overhead
- offline instrumentation
* Event model matches

analysis specification «Hard JVM features
- custom class loaders

* Uniform comparisons - native code
- serialization
* Tool composition - native libs
- prototyping
- debugging * Not C/C++

- profiling



DATACOLLIDER:
(NEAR) ZERO-OVERHEAD
DATA-RACE DETECTION




A Data Race in Windows

RunContext(...) RestartCtxtCallback(...)
{ {
pctxt->dwfCtxt &= '
~CTXTF_RUNNING;

pctxt->dwfCtxt |=
CTXTF_NEED_CALLBACK;

- Clearing the RUNNING bit swallows the setting of the
NEED_ CALLBACK bit

- Resulted in a system hang during boot
- Reproducible only on one hardware configuration
- This bug caused release delays on said system
- The hardware had to be shipped from Japan to Redmond for debugging



L
DataCollider

- A runtime tool for finding data races
- Low runtime overheads

- Readily implementable

« Works for kernel-mode and user-mode Windows programs

- Successfully found many concurrency errors in

- Windows kernel, Windows shell, Internet Explorer, SQL server, ...



False vs. Benign Data Races

4 ) 4 )
LockAcquire ( 1 ); | LockAcquire ( 1 ); '

False

gRefCount++; > | gRefCount++;

gStatsCount++; Benign LockRelease ( 1 );

LockRelease ( 1 );

> “ Destructive

gStatsCount++;

gRefCount++;

e iy




Existing Dynamic Approaches for Data-Race
Detection

- Log data and synchronizations operations at runtime

- Infer conflicting data access that can happen concurrently

« Using happens-before or lockset reasoning

LockAcquire ( 1 );
gRefCount++;

hapbensbetore LockRelease ( 1 );

LockAcquire ( 1 );
gRefCount++;
LockRelease ( 1 );

happens-before gRefCount++; P




L
Challenge 1: Large Runtime Overhead

- Classic example: Intel Thread Checker has 200x overhead

« BOE calculation for logging overheads
- Logging sync. ops ~ 2% to 2x overhead
 Logging data ops ~ 2x to 10x overhead
- Logging debugging information (stack trace) ~ 10x to 100x overhead

- Large overheads skew execution timing
- A kernel build is “broken” if it does not boot within 30 seconds

- SQL server initiates deadlock recovery if a transaction takes more than
400 microseconds

- Browser initiates recovery if a tab does not respond in 5 seconds

- New techniques (e.g. FastTrack) reduce overhead, but ...



Challenge 2: Complex Synchronization
Semantics

- Correctness depends on *exact™ knowledge of synchronization

- Synchronizations can be homegrown and complex
- (e.g. lock-free, events, processor affinities, IRQL manipulations,...)

- Missed synchronizations can result in false data races

AcquireMutex(gLock); AcquireMutex(gLock) ;
gRefCount++; gRefCount++;
ReleaseMutex(gLock); ppens-before ReleaseMutex(glock);

OpenFile(“foo”, EXCLUSIVE);
gRefCount++;
CloseFile();

OpenFile(“foo”, EXCLUSIVE);
gRefCount++;

happens-before CloseFile();




Challenge 2: Complex Synchronization
Semantics

- With multiple levels of interrupts, what is a thread?
- In some ways each <thread, interrupt level> is its own execution entity
- However, pre-thread data is shared across levels
- Interrupt levels are their own form of synchronization

Device: :OnInterrupt()
{ Device.Buffer =
ReadHw();

}

Lo

Device.Buffer = {0};
Device.SendWorkToHw();

Device: :OnInterrupt()
{ Device.Buffer =
ReadHw();

}

|

RaiseIrql (INTERRUPT_LEVEL);
Device.Buffer = {0};
LowIrql();

SetAffinity/RaiseIrql();
inc RefCount[CurrentProc()]
ClearAffinity/LowerIrql();

SetAffinity/RaiseIrql();
inc RefCount[CurrentProc()]
ClearAffinity/LowerIrql();




L
Challenge 3: Actionable Data

- Information about data races help only insofar as it identifies
the root cause

- Recording the state of the program is expensive for methods
that use logging

- Any data needed for debugging must be recorded for every memory
access that could potentially be part of a data race.

- E.g. If a stack trace is desired, then every memory access that might be
part of a data race must have the stack trace stored.



e
DataCollider Key ldeas

- Cause a data-race to happen, rather than infer its occurrence

« No inference => oblivious to synchronization protocols
- Catching threads “in the act” => actionable error reports

- Use hardware breakpoints for hooks and conflict detection

« Hardware does all the work => low runtime overhead

- Use sampling
- Randomly sample accesses as candidates for data-race detection at a

user-controlled overhead




L
Algorithm

Randomly Spl’ink|e code breaprintS on | PeridoicallyInsertRandomBreakpoints();
memory accesses | OnCodeBreakpoint( pc ) {

// disassemble the instruction at pc

When a code breakpoint fires at an access to X | (oc, size, iswrite) = disasm( pc );

- Set a data breakpoint on x |  temp = read( loc, size );
. : _ if ( isWrite )
- Delay for a small time window SetDataBreakpointRW( loc, size );
else

SetDataBreakpointW( loc, size );

Read x before and after the time window

del H
- Detects conflicts with non-CPU writes elay0

i x 2 ClearDataBreakpoint( loc, size );
« Or writes through a different virtual address
temp’ = read( loc, size );

? if(temp !'= temp’ || data breakpt hit)
Ensure a user-defined number of code- | ReportDataRace( );

breakpoint firings per second




e
Sampling: What's the tradeoff?

- Short answer: It’s up to the user!

* Long answer
- Tradeoff: overhead vs. likelihood of finding a data race
- User controls breakpoints/second & delay length

- Optimal usage?
- # of threads >= (# of HW watchpoints (4 on x86) + # of
processors), lots of both!

- Processors are always busy



Sampling w.r.t. Software Projects

- Bug bar: how likely would it be that a customer would
hit this data race?

- Lower overhead better approximates actual usage

- A data race found only at high overheads should be
rarely encountered by end users

- Controlling the overhead can be a way of prioritizing
data races



Sampling Instructions

- Challenge: sample hot and cold instructions equally

- A
if (rand() % 1000 == 0)
{
cold ();
}
else
{
hot ();
}

. A




e
Sampling Using Code Breakpoints

- Over time, code breakpoints aggregate towards cold-
instructions
- Cold instructions have a high sampling probability when they execute

- Samples instructions independent of their execution frequency
- Hot and code instructions are sampled uniformly

- Cold-instruction sampling is well-suited for data-race detection
« Buggy data races tend to occur on cold-paths
- Data races on hot paths are likely to be benign



Experience from DataCollider

- All nontrivial programs have data races

- Most (>90%) of the dynamic occurrences are benign

- Benign data race = The developer will not fix the race even when given
infinite resources

- Many of the benign data races can be heuristically pruned
« Races on variables with names containing “debug”, “stats”
- Races on variables tagged as volatile

« Races that occur often

- Further research required to address the benign data-race
problem — e.g. Adversarial memory & PortEnd



Data Race Category Count
Beni Statistic Counter 52
H:nu;g; ically gafe .Flag UPdate 29
Praned pecial Vanable 5
Subtotal 86
. Double-check locking | 8
aﬁil— Volatile 8
y Write Same Value 1
Pruned Other )
Subtotal 18
Real Confirmed 5
Investigating 4
Subtotal 9




Future Work

- Different sampling distributions
- Placing statistical preference on “interesting” instructions per static
analysis
- Different sampling rates

- Breakpoints per second is abstract

* Automated optimization Hypothetical Distribution for Optimization

Unique Races

y =
|
Delay Frequency

Delay Length



DataCollider Conclusion

- Puts the user in control of the overhead
- Fundamentally incapable of false data races

- Trivial to implement - requires no knowledge of
synchronization methods

- Sampling is biased toward user-scenarios, but converges
to a uniform distribution of static instructions

- Provides full debugging information (e.g. full memory
dump)



CUZZ: CONCURRENCY FUZZING
FIND RACE CONDITIONS WITH
PROBABILISTIC GUARANTEES




Cuzz: Concurrency Fuzzing

- Disciplined randomization of thread schedules

- Finds all concurrency bugs in every run of the program
- With reasonably-large probability

- Scalable

« In the no. of threads and program size

- Effective
- Bugs in IE, Firefox, Office Communicator, Outlook, ...
« Bugs found in the first few runs



Concurrency Fuzzing in Three Steps

Parent Child

void* p = malloc;

r

1. Instrument calls to Cuzz

2. Insert random delays

CallCuzz(); Init();
Cr‘eateThd(child); DOMOI‘EWOI‘k()_;
RandDelay(); free(p);
p->f ++;
N
free(p);
i

3. Use the Cuzz algorithm

to determine when and
by how much to delay

—

This is where all
the magic is




Find all “use-after-free” bugs

All nodes involve the use and free
ThreadCreate(...) of some pointer

if b frees a pointer used by g, the following
execution triggers the error

(o>

SetEvent (e)

(9

o ThreadJoin (...)

WaitEvent (e)




e
Find all “use-after-free” bugs

Problem:
For every unordered pair, say (b,g),
cover both orderings:

e.g.

—»(p—>(g (g
—>g—>(p>or>

ThreadCreate(...)

SetEvent (e)

(9

6 ThreadJoin (...)

WaitEvent (e)




Find all “use-after-free” bugs

Approach 1: enumerate all interleavings




Find all “use-after-free” bugs

Approach 2: enumerate all unordered pairs
* b->g
e g->b
e b->h




Find all “use-after-free” bugs

Two interleavings find all use-after-free bugs

(@b o> (g (>
(@@ (> e




Find all “use-after-free” bugs

Two interleavings find all use-after-free bugs

(@b o> (g (>
(@@ (> e

Cuzz picks each with 0.5 probability




Find all “use-after-free” bugs

- For a concurrent program with n threads
- There exists n interleavings that find all use-after-free bugs
» Cuzz explores each with probability 1/n



e
Concurrency Bug Depth

- Number of ordering constraints sufficient to find the bug
- Bugs of depth 1

- Use after free
- Use before initialization

B: fork (child); CFo
C: p = malloc(); . G: do_init();
D: ... \~ H: p->f ++;
E. ... [

; B

\ y




Concurrency Bug Depth

- Number of ordering constraints sufficient to find the bug
- Bugs of depth 2

- Pointer set to null between a null check and its use

(A 4 N
. B: p =malloc(); CH: .
. C: fork (child); — |: p = NULL;

| D /’J:
| E: if(p!=NULL‘/
- F: p->f++; !

. G: K /




Cuzz Guarantee

- n: max no. of concurrent threads (~tens)
- k: max no. of operations (~millions)

- There exists n.4#Td—1 interleavings that find all bugs of depth
d

- Cuzz picks each with a uniform probability

- Probability of finding a bug of depth d =1 /72.ATd—1



L
Cuzz Algorithm

Inputs: n: estimated bound on the number of threads
k: estimated bound on the number of steps
d: target bug depth

// 1. assign random priorities >= d to threads
fortin[1..n] do priority[t] = rand() + d;

// 2. chose d-1 lowering points at random
foriin[1...d) do lowering]i] = rand() % k;

steps = 0;
while (some thread enabled) {
// 3. Honor thread priorities
Let t be the highest-priority enabled thread;
schedule t for one step;
steps ++;

// 4. At the ith lowering point, set the priority to i
if steps == lowering][i] for some i
priority[t] = i;



Empirical bug probability w.r.t

worst-case bound
 Probability increases with n, stays the same with k

- In contrast, worst-case bound = 1/nk9!

0.025

=== jtems
el 16 items
64 items

0.02

o
o
=
(6}

°
o
=

Probability of finding the bug

2 3 5 9 17 33 65
Number of Threads



Why Cuzz is very effective

* Cuzz (probabilistically) finds all bugs in a single run

- Programs have lots of bugs

« Cuzz is looking for all of them simultaneously

 Probability of finding any of them is more than the probability of
finding one

- Buggy code is executed many times
- Each dynamic occurrence provides a new opportunity for Cuzz



Conclusions

- Two tools for finding concurrency errors

- DataCollider: Uses code/data breakpoints for finding data races
efficiently
- Cuzz: Inserts randomized delays to find race conditions

- Both are easily implementable
- Email: madanm@microsoft.com for questions/availability




ADVERSARIAL MEMORY FOR
DESTRUCTIVE RACES




Beyond Detecting Data Race Conditions

e Checkers can find real race conditions

* But which race conditions are real bugs?
- that cause erroneous behaviors (crashes, etc)
- and are not "benign race conditions”



Large Multithreaded Application
! !

Imprecise Race Detector
Eraser [SBN+ 97]
MultiRace [PS 07]
RacerX [EA 03]

Precise Race Detector
JavaPathfinder

DJIT+ [ISZ 99, PS 03]
Goldilocks [EQT 07]

Relay [VJL 07]

FastTrack [FF 09]

RaceTrack [YRC 05] Pacer [BCK 10]
INAW 061, ..
v
@ ) 9 L \ 4
Potential Real 5 '
Destructive
DaTa Races Data Races Data Races
I.lne 10 line 10 line 57
line 23 line 57
line 57 &
(Y Y,

Destructive data race: erroneous observable behavior

Benign data race: not a bug



Controlling Scheduling Non-Determinism

e lhread A
_>e _ .
e p = new Pt();
—®  p = null;
racy —®
Large read e Thread B
Concurrent —>9
APPli%a’rion :pr e a1l
—>® .draw () ;
Input —>® P
—e
—e
_>e
—e

(eg: CalFuzzer, DataCollider, etc.)



Memory Models

Memory [ /O

/1 | Network \ >
@0 @

Chip Multiprocessor (CMP)

 Each processor/core has a cache

* When do writes to x become visible to other processors?
e Sequentially Consistent MM
e Relaxed MM (TMM, x86-TSO, etc.)

* more than one value written to x may be visible



Example
int x;
int y;
Initially x ==y == 0;

Thread A Thread B
x = 10; rl = vy,
y = 20; r2 = X;

print rl + r2;

What's Printed? 30? 20? 10? 0O?



Example

int x;
volatile int y;

Initially x == == 0;
Thread A Thread B
x = 10; rl = vy,
y = 20; r2 = x;

print rl + r2;

What's Printed? 307 2QQ 10? 0?



Adversarial Memory [Flanagan-Freund 10]

Large
Concurrent
Application

F212121

]

Input

2TR12T:

Adversarial
memory exploits
memory
nondeterminism.

Racy read
sees old value
likely to crash
application.

Complements
schedule-based
approaches, quite
effective.



Adversarial Memory [Flanagan-Freund 10]
Thread A

e
— _ .
e p = new Pt();
::: p = null;
Large Y, Thread B
Concurrent _®
Application T
T if p !'= null
.draw () ;
Input P

2TR12T:



Example

int x = 10;

x =0;

fork{ if (x '= 0) x = 50/x; }
x = 42;

* Data race on x
e Is this data race destructive?

* Can program divide by zero?



Sequentially Consistent Memory Model

int x = 10; * Intuitive memory model
x = 0; » Each read sees most recent write
fork{ if (x !'= 0) x = 50/x; } * (No memory caches)
x = 42;
Q Px = 10
x =10
<=0 x =0
fork fork
x = 42
r = x ® Pr =x
r 1= O? r = 0?
r = X
x = 42 r = 50/r
(‘_’) X =r
5




Java Memory Model

Happens-Before Partial Order

int x = 10;

x = 0;

fork{ if (x '= 0) x = 50/x; }

x = 42;

Ox = 10 <— not visible
x =0 <— visible
fork
X = 42 <— visible

Q@

i r = X
! r '= 0°?

r 50/r
X =r

* Program order edges
* Fork edges
* Release-acquire edges, ...

Java Memory Model

Read R can "see” previous write W1
if no intervening write W2 with
W1<W2<R

(This is a JMM subset;
JMM can see some future writes
and admits additional behaviors)



Jumble

int x = 10; Record:
x = 0; .
fork{ if (x 1= 0) x = s0/x; 3 * Write buffer for racy vars
x = 42; * happens-before relation
P« = 10 < notvisible At each read:
x =0 <— visible « determine visible writes
fork » return old writes to crash app
|X = 42\ < visible with higher probability than
@ typical memory impl.
| r = x
: r '= 07
i B heuristically pick O

r
(,,)x = r division by zero



ol %o Q<: Xl ®|lo

10

42

50/r

Write Buffer for x:

l@A: 10

l@A: 10 | 2@A: 0

l@A: 10 | 2@A: 0

l@A: 10 | 2@A:0 | 4@A: 42




10

42

1@A: 10

l@A: 10 | 2@A: 0

1@A: 10 | 2@A: 0

1@A: 10 | 2@A: 0

A@A: 42

Read by B at [3,1]

Visible:

2@WA: 0

A@A: 42

Pick 42




10

42

l@A: 10

1@A: 10 | 2@A: 0

@ Read by B at [3,3]
Visible: | 2@A:0

1@, 4@A: 42
Pick O

| @be—ro——rr T

1@A: 10 | 2@A: 0 | 4@A: 42




10

42

l@A: 10

l@A: 10 | 2@A: 0

l@A: 10 | 2@A: 0

l@A: 10 | 2@A:0 | 4@A: 42
l@A: 10 | 2@A:0 | 4@A:42
l@A: 10 | 2@A:0 | 4@A: 42

Div By O




CRASH!

/
I RoadRunner Event
( , ) Stream
Instrumented { Monitor ) A: d(x)
Bytecode s T Ylte
SR t 42
ﬁ gbs’rmc’r S’ra’r) eR
[Instmﬂnenfer] \_ Y,
N 2

]

Java
Bytecode




Jumble Performance

* Keep write buffers only for small # of locations
- all instances of a particular field declaration
- array sampled at indexes O and 1 (configurable)

e Slowdown of 1.2x to bx

* Write buffers limited to 32 entries
- eject writes when no longer visible or redundant
- some capacity ejects



Jumble Precision: failures out of 100 runs

Benchmark: racy field Julr\ln(ljole SC | Oldest E)L:lesé Random R;)ellﬂcij?frp
montecarlo: DEBUG 0 0 0 0 0 0
mtrt: threadCount 0 0 0 0 0 0
point: p 0 0 0 0 0 0
point: x 0 0 60 52 32 30
point: y 0 0 48 53 27 30
jbb: elapsed_time 0 0 100 0 15 5
jbb: mode 0 0 100 100 95 98
raytracer:.checksum1 0 0 100 100 100 100
sor: arrays 0 0 100 100 100 100
lufact: arrays 0 0 100 100 100 100
moldyn: arrays 0 0 100 100 100 100
tsp: MinTourLen 0 0 100 100 100 100

- 27 fields with data races
- ran Jumble manually once for each field
e - found 4 destructive data races

11 Java;
arks o {s] arks of Sun Microsystem:
both. Eclipse is a trademark of the Eclipse Foundation, Inc

ipse

Europa
120070205-0009




Jumble Summary

» Identifying destructive data races
- very difficult, time consuming, error prone

* Adversarial memory automates identification

- reveals destructive data races with high
confidence

- helps focus effort on fixing real bugs



Where To Go From Here?

* [Much work on all of these problems, some by the audience, by us, ...]
* Performance, performance, performance ...

- always-on detection, HW support,

- static-dynamic hybrid analyses, language support
e Is sampling the way to go for debugging?

- Does it miss rare data races?
 Prioritize and deal with benign data races

- which data races are most critical?
e How to respond to data races?

- warning / fail-fast / recovery
» Reproducing traces exhibiting rare data races

- record and replay
* Generalization

- reason about traces beyond the observed trace
* Finding memory model problems
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