DYNAMIC ANALYSES FOR
DATA RACE DETECTION

John Erickson
Microsoft

Stephen Freund
Williams College

Madan Musuvathi

Microsoft Research

Introductions...

Tutorial Goals

- What is (and is not) a data race
- State of the art techniques in dynamic data race detection
- Implementation insights

- Open research problems

Tutorial Structure

- Background

- Lockset and Happens-before Algorithms

- FastTrack — In Depth

 Implementation Frameworks

- RoadRunner — In Depth

- DataCollider — Sampling for Data-race Detection

- Advanced Schedule Perturbation
* Cuzz

« Adversarial Memory Models

BACKGROUND

Concurrency vs Parallelism

Concurrency Parallelism
Manage access to shared Use extra resources to solve a
resources, correctly and problem faster
efficiently

Task
Task Task Task ‘/l\
Sub Sub Sub
Task Task Task

Resource Reso Reso Reso
urce urce urce

Sometimes, creating parallelism
will create concurrency

e
Threads and Shared Memory

-« Common programming model
 For dealing with parallelism and concurrency

- Tasks vs Threads
- Subtly different abstractions
- Threads are usually managed by the operating system
- Tasks are lightweight, and are usually provided by the language runtime

- Data races can occur
* In both threads and task based programming
- When dealing with both parallelism and concurrency

Moore’s law

make computers faster

Moore’s law

Intel Processor Clock Speed (MHz)

10000
Pentium4 Prescott
Core 2 Extreme
1000
Pentium il
Celeron Multicore Crisis
. isHere!
Pentium
100
80486
80386
10
80286
3080
3 T T T T T T
1968 1973 1979 1984 1990 1995 2001 2006

01

Moore’s law now
produces more cores

Open Research Problems

- Make concurrency and parallelism accessible to all
« Other Programming models

-« How to write efficient multi-threaded code

- How to write correct multi-threaded code_ T ttond

First things First
Assigning Semantics to Concurrent Programs

intX=F=0;

X 1; t F;
F 15 u X5

- What does this program mean?

- Sequential Consistency [Lamport ‘79]
Program behavior = set of its thread interleavings

Sequential Consistency Explained

int X=F=0; //F=1implies X is initialized

X = 1;
t=Fl | F =15 lu=-X8 |x-1 u = X8 F=1;
u=X; lu=xal |F -1 F=1; F=1; u = X;
t=1, u=1 t=0, u=1 t=0, u=1 t=0, u=0 t=0, u=1 t=0, u=1

=
—

t=1 implies u=1

Naturalness of Sequential Consistency

- Sequential Consistency provides two crucial abstractions

« Program Order Abstraction
« Instructions execute in the order specified in the program

A;:B
means “Execute A and then B”

- Shared Memory Abstraction
- Memory behaves as a global array, with reads and writes done immediately

- We implicitly assume these abstractions for sequential programs

In this Tutorial

- We will assume Sequential Consistency

- Except when explicitly stated otherwise

Common Concurrency Errors

- Atomicity violations
- Ordering violations
- Unintended sharing

- Deadlocks and livelocks

Atomicity Violation

- Code that is meant to execute “atomically”
- That is, without interference from other threads

- Suffers interference from some other thread

Thread 1 Thread 2
void Bank::Update(int a) | void Bank::Withdraw(int a)
{ : {
int t = bal; - int t = bal;
bal = t + a; : bal = t - a; |
} } |
. iy

L
Ordering Violation

- Incorrect signalling between a producer and a consumer

Thread 1

work = null; :
CreateThread (Thread 2);—
work = new Work();

—> Thread 2

ConsumeWork(work);

L
Unintended Sharing

- Threads accidentally sharing objects

Thread 1

void work() {
static int local = ©;

local += ..

Thread 2

void work() {
static int local = ©;

local += ..

L
Deadlock / Livelock

4 N\ 4 N
Thread 1 Thread 2
AcquireLock(X); | AcquireLock(Y);
AcquireLock(Y); | AcquirelLock(X);

L
Deadlock / Livelock

Init
X:y:@;

4 N\ 4)
Thread 1 | Thread 2
while (x == @) {} | while (y == @) {}

y = 1; | X = 1;

Common Concurrency Errors

- Atomicity violations

Data Race is a
good symptom for
these

- Ordering violations < (

- Unintended sharing

- Deadlocks and livelocks

WHAT IS A DATA RACE ?

- The term “data race” is often overloaded to mean different
things

- Precise definition is important in designing a tool

Data Race

- Two accesses conflict if
- they access the same memory location, and

- at least one of them is a write
Write X — Write X
Write X — Read X
Read X — Write X
Read X — Read X

- A data race is a pair of conflicting accesses that happen
concurrently

“Happen Concurrently”

- A and B happen concurrently if

- there exists a sequentially consistent execution in which they
happen one after the other

X =1; t = F;
F = 1; u = X;
X = 1;
F = a8 Happen
Concurrently
T = B8

L
Unintended Sharing

- Threads accidentally sharing objects

Thread 1

void work() {
static int local = ©;

local += ..

Data Race

Thread 2

void work() {
static int local = ©;

local += ..

Atomicity Violation

- Code that is meant to execute “atomically”
- That is, without interference from other threads

- Suffers interference from some other thread

Thread 1 : Thread 2
void Bank::Update(int a) | void Bank::Withdraw(int a)
{ | {
int t = bal; int t = bal;
bal = t + a; t - a;
}
-y

Data Race

L
Ordering Violation

- Incorrect signalling between a producer and a consumer

Thread 1

work = null; |
CreateThread (Thread 2);—
work = new Work(); T Thread 2

‘\\\\\\ : ConsumelWork(work);

Data Race

L
But....

4 5 4 N
AcquireLock(){ | Releaselock() {
while (lock == 1) {} lock = 0;
CAS (lock, @, 1); | }
}
N,

Data Race ?

Acceptable Concurrent Conflicting Accesses

- Implementing synchronization (such as locks) usually requires
concurrent conflicting accesses to shared memory

- Innovative uses of shared memory
* Fast reads
- Double-checked locking
- Lazy initialization
- Setting dirty flag

- Need mechanisms to distinguish these from erroneous
conflicts

Solution: Programmer Annotation

- Programmer explicitly annotates variables as “synchronization”
- Java — volatile keyword
« C++ —std::atomic<> types

Data Race

- Two accesses conflict if
- they access the same memory location, and
- at least one of them is a write

- A data race is a pair of concurrent conflicting accesses to
locations not annotated as synchronization

Data Race vs Race Conditions

- Data Races != Race Conditions
- Confusing terminology

- Race Condition
- Any timing error in the program
- Due to events, device interaction, thread interleaving, ...

- Data races are neither sufficient nor necessary for a race
condition
- Data race is a good symptom for a race condition

DATA-RACE-FREEDOM SIMPLIFIES
LANGUAGE SEMANTICS

L
Advantage of Annotating All Data Races

- Defining semantics for concurrent programs becomes
surprisingly easy

- In the presence of compiler and hardware optimizations

L
Can A Compiler Do This?

= X*5; L1: t = X*5;
=Y; S L2: u =Y,
= X*5; L3: v = t;

t,u,v are local variables

OK for sequential programs X.Y are possibly shared

if X is not modified between L1 and L3

Can Break Sequential Consistent Semantics

possiblyu==1&&v==0

Data Race

L
Can A Compiler Do This?

L1: t = X*5;
T L2: u =Y;
L3: v = t;

t,u,v are local variables

OK for sequential programs X.Y are possibly shared

if X is not modified between L1 and L3

OK for concurrent programs
if there is no data race on X or
if there is no data raceon Y

L
Key Observation [Adve& Hill '90]

- Many sequentially valid (compiler & hardware)
transformations also preserve sequential consistency

- Provided the program is data-race free

- Forms the basis for modern C++, Java semantics
data-race-free = sequential consistency
otherwise =2 weak/undefined semantics

L
A Quiz

- Can the assertion fire in this C++ program?

()

main

bool dirty = false;
// Create threads T1,T2

(Thread T1 N [Thread T2 k
void f() void f()
{ | {
dirty = true; : dirty = true;
))

// Wait for T1,T2 to finish

assert (dirty);

DATA RACE DETECTION

Overview of Data Race Detection Techniques

- Static data race detection

- Dynamic data race detection
- Lock-set
- Happen-before

- DataCollider

Static Data Race Detection

- Advantages:
- Reason about all inputs/interleavings
» No run-time overhead
- Adapt well-understood static-analysis techniques
- Annotations to document concurrency invariants

- Example Tools:
- RCC/Java type-based

- ESC/Java "functional verification"
(theorem proving-based)

Static Data Race Detection

- Advantages:
- Reason about all inputs/interleavings
» No run-time overhead
- Adapt well-understood static-analysis techniques
- Annotations to document concurrency invariants

- Disadvantages of static:
- Undecidable...
- Tools produce “false positives” or “false negatives”
- May be slow, require programmer annotations
- May be hard to interpret results

Dynamic Data Race Detection

- Advantages
- Can avoid “false positives”
- No need for language extensions or sophisticated static analysis

- Disadvantages
« Run-time overhead (5-20x for best tools)
- Memory overhead for analysis state
- Reasons only about observed executions

« sensitive to test coverage
* (some generalization possible...)

Tradeoffs: Static vs Dynamic

- Coverage
- generalize to additional traces?

- Soundness
- every actual data race is reported
- Completeness

- all reported warnings are actually races

 Overhead
* run-time slowdown
+ memory footprint

- Programmer overhead

L
Definition Refresh

- A data race is a pair of concurrent conflicting accesses to
unannotated locations

X =1; t = F;
F =1; u = X;
X =1;
F = 1§ Happen
Concurrentl

- Problem for dynamic data race detection
- Very difficult to catch the two accesses executing concurrently

Solution

- Lockset
- Infer data races through violation of locking discipline

- Happens-before

- Infer data races by generalizing a trace to a set of traces with the same
happens-before relation

- DataCollider
- Insert delays intelligently to force the data race to occur

LOCKSET ALGORITHM

Eraser [Savage et.al. ‘97]

Lockset Algorithm Overview

- Checks a sufficient condition for data-race-freedom
- Consistent locking discipline
- Every data structure is protected by a single lock
- All accesses to the data structure made while holding the lock

« Example:
// Remove a received packet RecvQueue is
AcquireLock(RecvQueuelk); consistently protected
pkt = RecvQueue.Removerupyy, by RecvQueuelk

ReleaselLock(RecvQueuelk);

.. // process pkt

// Insert into processed
AcquireLock(ProcQueuelk);
ProcQueue.
ReleaselLock(ProcQueuelk);

ProcQueue is
consistently protected
by ProcQueuelLk

Inferring the Locking Discipline

- Solution: Infer from the program

- How do we know which lock protects what?
AcquireLock(A),
AcquireLock(B

- Asking the programmer is cumbersome
X is protected by
A, or B, or both
X ++;

Releaselock(B); __{ X is protected }

ReleaselLock(A); by B
X is protected by
B, or C, or both

AcquireLock(
AcquireLock(
X >
ReleaselLock(C);
ReleaselLock(B);

L
LockSet Algorithm

- Two data structures:

+ LocksHeld(t) = set of locks held currently by thread t
+ Initially set to Empty

- LockSet(x) = set of locks that could potentially be protecting x
+ Initially set to the universal set

- When thread t acquires lock |

- LocksHeld(t)=LocksHeld(t)U{/}
- When thread t releases lock |

« LocksHeld(t)=LocksHeld(t) —{/}

- When thread t accesses location x
- LockSet(x)= LockSet(x)NLocksHeld(t)

- Report “data race” when LockSet(x) becomes empty

Algorithm Guarantees

- No warnings = no data races on the current execution
- The program followed consistent locking discipline in this execution

- Warnings does not imply a data race
- Thread-local initialization

// Initialize a packet
pkt = new Packet();
pkt.Consumed = @

AcquireLock(SendQueuelLk);

pkt = SendQueue.Top();

ReleaselLock(SendQueuelk); géqﬁgﬁgﬁzzk? EZEESEeueLk);

pkt = SendQueue.Top();
pkt.Consumed = 1;
ReleaselLock(SendQueuelLk);

LockSet Algorithm Guarantees

- No warnings = no data races on the current execution
- The program followed consistent locking discipline in this execution

- Warnings does not imply a data race
- Object read-shared after thread-local initialization

new
=) @;

AC)s

el

A
A.
// publish A

PR = b f = globalA.f;

Maintain A State Machine Per Location

Thread T
Read /

Thread T’

Read Any Thread

Read

Any Thread
Write

Any Thread
Write

Shared
Any Thread v
Read / Write
Run LockSet Algorithm

LockSet Algorithm Guarantees

- State machine misses some data races

// Initialize a packet
pkt = new Packet();
pkt.Consumed = 0;

AcquireLock(WrongLk);

pkt = SendQueue.Top();

pkt.Consumed = 1; // Process a packet

ReleaselLock(WronglLk); AcquireLock(SendQueuelk);
pkt = SendQueue.Top();
pkt.Consumed = 1;
ReleaselLock(SendQueuelk);

LockSet Algorithm Guarantees

- Does not handle locations consistently protected by different
locks during a particular execution

// Remove a received packet Pkt is protected by
AcquireLock(RecvQueuelk); RecvQueuelk

pkt = RecvQueue.RemoveTop();
ReleaselLock(RecvQueuelk);

4——~_______-__~__———~_J/

L Pkt is thread local

.. // process pkt

// Insert into processed

AcquirelLock(ProcQueuelk);

ProcQueue.Insert(pkt);
ReleaselLock(ProcQueuelk); Pkt is protected by
ProcQueuelLk

HAPPENS-BEFORE

Happens-Before Relation [Lamport '78]

- A concurrent execution is a partial-order determined by communication
events

- The program cannot “observe” the order of concurrent non-communicating
events

Releaselock Releaselock

‘>D AcquireLock AcquireLock
xX++
yrk x++

e
Happens-Before Relation [Lamport '78]

- A concurrent execution is a partial-order determined by communication

events

- The program cannot “observe” the order of concurrent non-communicating

events

Releasel.ock

xX++

- Both executions form the same happens-before relation

) 4

Q

Acquirelock

y++

Releasel.ock

X++

v

AcquireLlock

y++

Constructing the Happens-Before Relation

- Program order

- Total order of thread teleaselock
instructions
- Synchronization order AcquireLock
- Total order of accesses to the
same synchronization é x++
Releasel.ock
) 4
x++
)

AcquireLock

Happens-Before Relation And Data Races

If all conflicting accesses are
ordered by happens-before

— data-race-free execution

— All linearizations of partial-order
are valid program executions

If there exists conflicting accesses
not ordered

—> a data race

Releaselock

x++

AcquireLock

AcquirelLock

‘¢

Releaselock

Happens-Before and Data-Races

- Not all unordered conflicting accesses are data races

=1)J

Init: X=Y =0;
if(
X

- But, there is a dataraceonY

>
i
=

n <
N I

- There is no data race on X

- Remember:
- Exists unordered conflicting access = Exists data race

IMPLEMENTING HAPPENS-
BEFORE ANALYSES

Dynamic Data-Race Detection

—
Vector Clocks [M 88] Happens
Goldilocks [EQT 07] Before
DJIIT+ [Isz 99,5 03] |[Lamport 78]
TRaDe [¢B 01]

Precision

Barriers [PS 03]
Initialization [vPG 01]

Eraser
[SBN+ 97]

Cost

Precise
Happens-
Before

—+
3
S
i
<
=
\IK

=3 (&)
s T3
/N

3 3
N’ <

A

<

=
]

—

N e— N —h e—W e— D — —

Ne—f O le— N e— D W e— N ——

l rel(m)

0
l acq(m)

lrel (m)

P
vol

[tmp

lacq(m) <

l rel(m)

0
l acq(m)

lr‘el (m)

P
vol

[tmp

lacq(m) <

0
l acq(m)

lrel (m)

P
vol

[tmp

lacq(m) <

l rel(m)

0
l acq(m)

lrel (m)

P
vol

[tmp

lacq(m) *

71415

0
l acq(m)

1
P
vol

[tmp

lacq(m) <

Ve, VC,
4 (1 2 A8
A B A |B

A's local time B's local time :

VC, VCy
4 |41 218
A |[B A B

B-steps with B-time < 1
happen before
A's next step

Ve,

VC,

Write-Write Check: W,CVC, ?

3

0

4

1

? Yes

Read-Write Check: R,CVC,?

0

1

4

1

? Yes

O(n) time

VC,

L

WX RX

n
[

[

[

n

[

[

(] et ot

Write-Read Check: W, CEVC, ?

4181151112 No

O(n) time
4| g 4 410 011
"x=1
4|8 4 4|8 011

VectorClocks for Data-Race Detection
e Sound

- No warnings = data-race-free execution

* Complete
- Warning = data-race exists

e Performance
- slowdowns > 50x
- memory overhead

79

Dynamic Data-Race Detection

Precision

Happens

Before
[Lamport 78]

Vector Clocks [M 88]

RaceTrack [YRC 05]
MultiRace [PS 03]
Hybrid Race Detector [OC 03]

Initialization

Eraser
[SBN+ 97]

Cost

Combined Approaches

e MultiRace [PS 03,07]
- Begin with LockSet for x
- Switch to VC for x if LockSet becomes empty
- (adaptive granularity as well)

e RaceTrack [YRC 05]

- Use LockSet for x and extended Eraser state
machine.

- Use VCs to reason about fork/join and wait/
notify

Slowdown (x Base Time)

50 89.8

45

40

35

31.6
30

2> 21.7

20 o

15 o

o
()}

10

Empty Eraser MultiRace Goldilocks Basic VC DIIT+

FASTTRACK

Dynamic Data-Race Detection

Precision

FastTrack

[Flanagan-Freund 09]

RaceTrack [YRC 05]
MultiRace [PS 03]
Hybrid Race Detector [OC 03]

Initialization

Eraser
[SBN+ 97]

Happens

Before
[Lamport 78]

Cost

Dynamic Data-Race Detection

Precision

FastTrac

[Flanagan-Freund

Hybrid

Barrier:
Initialization

0 -

for Clocks (M sa]\ 1APPens
EQT 07] Before

s 03] |[Lamport 78]

k

/

Design Criteria:
- sound & complete

- efficient
* Insight:
 HB relation is a partial order

Eraser
[SBN+ 97]

» But all accesses to a var are

(find at least 1st data race on each var)

~

K almost always totally ordered /

Cost

Ve,

VC,

Write-Write Check: W,CVC, ?

3

0

4

1

? Yes

Read-Write Check: R,CVC,?

0

1

4

1

? Yes

O(n) time

Write-Write and Write-Read Data Races

Thread A Thread B Thread C Thread D

No Data Races Yet: Writes Totally Ordered

Thread A Thread B Thread C Thread D

No Data Races Yet: Writes Totally Ordered

Thread A Thread B Thread C Thread D

@ Q @ I
s s s x =3

Last Write
VG, A w, "“Epoch"

2| 8 121 I@B/

Write-Write Check: W,EVC, ?
@B |[=X|4]|1]|?2 VYes

(1 ¢ 1?)

O(1) time

Ve, VC,
4 |1 0] 8
'x=0
4 |1 0| 8
rel (m)
511 \4 8
|acqm
511 4 | 8 .
"x=1
511 4 | 8

3@A

4@A

4@A

4@A

3@B

Write-Read Check: W, & VC, ?

8@B |[=<|5]1]? No
8<1?) 0) time
* |acq(m) ;
4|8 4|1 A@A
x =1
1|8 a1]([ses

Read-Write Data Races -- Ordered Reads

Thread A Thread B Thread C Thread D

Most common case: thread-local, lock-protected, ...

Read-Write Data Races -- Unordered Reads

Thread A Thread B Thread C

VC,

read x:

T@A -
T@A -
T@A 1@B
T@A | |8

)

O(1)
O(n)

O(n)

Read-Write Check: R, ,CVC,?

8

1

8

0

? No

Thread A Thread B Thread C Thread D

? ’ ? ?

O
Q@
:
.
O

> o(n)

Thread A Thread B Thread C Thread D

? ’ ? ?

O
Q@
:
.
O

Thread A Thread B Thread C Thread D

0 0 > .

read y

Q-0 -0~ - O - - OO0~

Thread A Thread B
; ;
CFr'ead y Ir‘ead Yy
¢
?

Forget VC for R,
and switch back

to "last read epoch"

é
.

.é
.

Thread C Thread D
Q@ Q
O O
® ¢
® ?
i O
y = 10 i
> N2 ©
O

Slowdown (x Base Time)

50 89.8

45

40

3> 31.6

30

2> 21.7

20 o

15 o

o
()}

10

Empty Eraser MultiRace Goldilocks Basic VC DIIT+ FastTrack

Memory Usage
e FastTrack allocated ~200x fewer VCs

Memory
Checker Overhead
Basic VC,
DILT+ 7.9
FastTrack 2.8x
Empty 2.0x

(Note: VCs for dead objects are garbage collected)

* Improvements
- accordion clocks [CB 01]
- analysis granularity [PS 03, YRC 05]

Precise Data Race Classification for
Other Checkers
| |

® Original

Atomizer

M FastTrack
Prefilter

Velodrome

SingleTrack

0 20 40 60 80 100 120
Average Slowdown (x base time)

and ~40% reduction in false alarms in Atomizer...

Eclipse 3.4

Europa
!
0205-0009
- > 6,000 classes L
/ i ic s and others, 2000, 2006, All rights reserved. J all Java-
m e trademarks or registered trademarks of Sun Microsystems,
In . or both, Eclipse is a trademark of the Eclipse Foundation, Inc.

- 24 threads
- custom sync. idioms

* Precision (tested 5 common tasks)
- Eraser: ~1000 warnings
- FastTrack: ~30 warnings

* Performance on compute-bound tasks

- > 2x speed of other precise checkers
- same as Eraser

IMPLEMENTATION
FRAMEWORKS

Building a Dynamic Data Race Detector

- ldentify synchronization

- Instrument callbacks
- At synchronization operations
« At memory operations

- Implement a data race detection algorithm
- Report data races with debugging information

Desigh Considerations

- Performance overhead

- Tolerance to false positives
« Coverage

- Debuggability

Performance Overhead

- Why is overhead important?

Performance Overhead

- Why is overhead important?
- Tests take longer

- Interaction with timing behavior

- Databases will trigger deadlock-recovery if transactions don’t finish in X
ms

Back of the Envelope Calculation

- ~ One in five instructions is a memory operation
- ~ One in two memory operation is to a non-stack location

- Data race detector is called every 10 instructions
- On every callback,

- Need to perform at least one memory lookup to access the
metadata

 Synchronization to avoid data races (!) on metadata

- And, we need some cycles to run the algorithm
- =» OVERHEAD

False Positives

- False Data Races

« A “bug” in the algorithm

 Lockset will report a race if program does not follow a consistent lock
discipline

- A “bug” in the tool
« don’t cover all synchronizations
- Benign Data Races
- Data Races that don’t trigger assertion violations
« Prone to memory model issues

* Need to prove to the user that this data race can cause a problem
under some memory model

Coverage

- Given an trace, does the tool find
- All data races
« The first data race

» Can the tool find data races in other “related” traces?

- Happens-before algorithm finds all data races in traces with the same
happens-before ordering of synchronization as the original

- |s it acceptable to miss data races?

e
Debuggability

- So, you have found a data race, now what?

- Need to collect stack trace information
« For one thread?
« For both threads?

- Tools usually find tons of data races instances

- Need a good method to group data race reports

Building a Dynamic Data Race Detector

- ldentify synchronization

- Instrument callbacks
- At synchronization operations
« At memory operations

- Implement a data race detection algorithm
- Report data races with debugging information

L
ldentifying Synchronization

- Thread synchronization
- Locks, semaphores, condition variables,...

- Volatile/Atomic accesses

- Memory model specifies these as “synchronization”
» Not recognizing them will report lots of benign data races

* Interprocess Communication

Example of IPC over threads

Thread A
X ++,

send_pipe(); ~__

\\\\\\\\\\\\iThread B
Happens-before recv_pipe();

X ++,

Failure to handle = False Data Race

Thread A
X ++,

send_pi:§?7>\\\\\\
Thread B
recv_pipe();

False Data Race! X+,

Data Race ?

Thread A

X ++,

malloc();
Thread B
malloc();

X ++,

Data Race ?

- Not, if you consider internal details of malloc()

Thread A
X ++;
malloc(){
lock(); Thread B
. malloc(){
unlock(); slock();
} Happens-before anlock(s
}
X ++;

Instrumenting Callbacks

» At Source
- Compiler optimizes your instrumentation
- Need good happens-before specification for third-party (library) binaries

At Binary
« More expensive instrumentation
- Handle (and find data races in) libraries

Processing Callbacks

* Online
- Run the data-race detection algorithm at runtime
» Expensive processing
- At least find one access in the action

- Offline
- Log the events, and process them later
- Lightweight processing
* Log management is an issue

ROADRUNNER

Binary Instrumentation

* Atom, Vulcan, ASM, SOOT, Valgrind, PIN, ...
(or modifying a VM)
* Can be difficult to build robust/efficient tools
- Expose most features of actual hardware
- Complex details of underlying machine
= object layout, addressing modes, thread impl.
- Hard to optimize instrumentation code
- Large start-up cost
* Other issues
- Portability
- Comparisons between tools

RoadRunner [Flanagan-Freund 10]

1. A general framework to facilitate
- writing
- composing
- debugging
- comparing
dynamic analyses for multithreaded code
2. Efficient for Java, without changing JVM

* Implemented >30 analyses in RoadRunner

- Performance competitive with analysis-specific
implementations built from scratch

- And with implementations in Jikes RVM [Bond et al]

Using RoadRunner Checking Tools
e Single Checker:

rrrun -tool=LockSet Target
rrrun -tool=FastTrack Target

rrrun -tool=HappensBefore Target

* Composed Checkers:

rrrun -tool=Threadlocal:ReadOnly:LockSet Target
rrrun -tool=ThreadLocal:ReadOnly:LockSet:Atomizer Target
rrrun -tool=FastTrack:Atomizer Target

* Diagnostic Tools:

rrrun -tool=Threadlocal:Print Target

rrrun -tool=FastTrack:Count:Atomizer Target

RoadRunner

Size

Tools (lines) Description
Empty 35 "No Op" Back End
Print 170 Print synch / memory ops
ThreadLocal 48 Local vs. Shared Data
LockSet [SBN97] 327
DJIT+ [PS 07] 582
MultiRace [PS 07] 923 Race Conditions
Goldilocks [EQT 07] 1,416
FastTrack [FF 09] 758
Atomizer [FF 04] 245 Serializability
Velodrome [FFY 08] 1,088
SingleTrack [SFF 09] 1,655 Deterministic Parallelism
Jumble [FF 10] 1,326 Adversarial Memory
SideTrack [YSF 09] 500 Trace generalization

Architecture

(c B\
Standard JVM RoadRunmer -
A .) Stream (» Back-End
Instrumented L Monitor | A: acq(m) L Tool
BYTeCOde A: read(x)
— B: write(y)
ﬁ gbs’rr'ac‘l' STG% A: ::i (:)y { Back End }
Tbol
=
Instrumenter Back End
[] \ / { Tbol }
\ S %
i

Java Error: race on x...
Bytecode

Others: Sofya [KDR 07], CalFuzzer JNPS 09]

Tool API (Without Composition)

* Tool specifies:
- handlers for synchronization / access events
- data to store about abstract program state

abstract class Tool {
void create (NewThreadEvent e)
void acquire (AcquireEvent e)
void release (ReleaseEvent e)

void access (AccessEvent e)

RR Abstract State

Shadow Threads Shadow Vars for locations

0.X a[1]

Thread 1 Thread 2

RR Abstract State: LockSet

Shadow Threads Shadow Vars for locations
0.X a[l]
Thread 1 Thread 2
{m} {mn}

{m} {}

Decorations for Shadow Threads

* Maps with constant-time operations
- Creation:

Decoration<ShadowThread,LSet> held =
ShadowThread.makeDecoration (LSet.empty()) ;

- Usage:

LSet 1s = held.get(thread);
held.set (thread, ls.add(lock)) ;

* Values kept in small array stored in Key objects

Variable Shadows for Locations

* Different requirements
- orders of magnitude more locations & uses
- performance critical
- decoration overhead too large

* RR stores single ShadowVar value for each loc.

* Tool specifies value for fresh location:

ShadowVar makeShadowVar (AccessEvent e) {
return held.get (e.thread);

Event Stream

class AcquireEvent {
AcquirelInfo info;
ShadowThread thread;
ShadowLock 1lock;

}

class AccessEvent {
AccessInfo info;
ShadowThread thread;

ShadowVar shadow;

boolean putShadow (ShadowVar var)

update ShadowVar
stored for location

LockSet Handlers

public void acquire (AcquireEvent e) ({
LSet l1ls = held.get(e.thread)
held.set (e.thread, ls.add(e.lock));

public void access (AccessEvent e) ({
LSet locks = (LSet)e.shadow;
LSet held = held.get(e.thread) ;
LSet newlocks = locks.intersect (held);
e .putShadow (newLocks) ;
if (newLocks.isEmpty()) {
error (e.info) ;

RR Abstract State: HappensBefore

Shadow Threads

Thread 1

Thread 2

Shadow Vars

0.X

a[1]

[3.2]

[4.2]

[1.11]

Shadow Locks

m

[3.2]

[19]

RR Abstract State: ThreadLocal

Shadow Threads

Thread 1

Thread 2

Shadow Vars

0.X

Shared

Shadow Locks

m

a[1]

Thread 2

Tool API (With Composition)

abstract class Tool {

Tool next;

void create (NewThreadEvent e) next.create(e) ;
void acquire (AcquireEvent e) next.acquire (e) ;

void release (ReleaseEvent e) next.release (e) ;

e T e T e N .}

}
}
}
}

void access (AccessEvent e) next.access (e) ;

}

* Every Tool:
- must pass all sync events to next
- can filter out access events

Composed Tools: "ThreadLocal:LockSet"

Shadow Threads

Thread 1

Thread 2

Shadow Vars

0.X

{m}

a[1]

{m}

{}

Shared

Shadow Locks

m

Thread 2

ShadowVar Ownership

Shadow Threads Shadow Vars
0.X a[1]
Thread 1 Thread 2 { m } Thread 2
{m} {}
Shadow Locks * Still keep a single ShadowVar for
each location
a * Type indicates current owner

* Tool explicitly passes ownership to
next tool in chain

public void acquire (AcquireEvent e) {
LSet 1ls = held.get(e.thread) ;
held.set (e.thread, ls.add(e.lock));

public void access (AccessEvent e) {
LSet locks = (LSet)e.shadow;
LSet held = held.get(e.thread) ;
LSet newLocks = locks.intersect (held);
e.putShadow (newLocks) ;
if (newLocks.isEmpty()) {
error (e.info) ;

public void acquire (AcquireEvent e) {
LSet 1ls = held.get(e.thread) ;
held.set (e.thread, ls.add(e.lock));

next.acquire (e) ;

public void access (AccessEvent e) {

if (! (e.shadow instanceof Set)) {
next.access (e) ; // Not owner

} else {
LSet locks = (LSet)e.shadow;
LSet held = held.get(e.thread) ;
LSet newLocks = locks.intersect (held) ;
e.putShadow (newLocks) ;
if (newLocks.isEmpty()) {

error (e.info); this.advance (e) ;

Performance

Tool Slowdown
(x base time)

Empty 5.6
Eraser 94
(=ThreadLocal:ReadOnly:LockSet)

Eraser:RedundantSync:Atomizer 98
FastTrack 7.3
FastTrack:Velodrome 8.1

* Memory Overhead: at least 2x, due to ShadowVars

* Running times are competitive with analysis-specific
checkers built from scratch

Implementation: ShadowVar State

class C {
int x;
int y;

(9]
™
T
¥

AN

shadow x

Y

shadow y

int a[] = ...,
al[2] = 3;

[O]

-

[1]

[2]

a
|
I
|
|
I
|

Y

-

2. ConcurrentHashMap

Array-To-Shadow Map\

1. per-thread inline cache [_ _ 5

\3. WeakHashMap "A’r’ric"/

shadow [0O]

shadow [1]

shadow [2]

Implementation: Event Handling

* Thread performing operation executes handler

* Avoiding data races on ShadowVar for location:
- serialize event stream
- tool-provided synchronization
- optimistic updates

public void access (AccessEvent e) {
LSet held = held.get(e.thread) ;
do {
LSet locks = (LSet)e.shadow;
LSet newLocks = locks.intersect (held) ;
} while (!'e.putShadow (newLocks)) ;

Implementation: Optimizations

*Leverage JIT

* Event Object Reuse

* Array-To-Shadow Map
* Fast Path Inlining

- most access events handled without modifying
state or using full event info

- RoadRunner inlines these "fast paths"

boolean readFP (ShadowVar v, ShadowThread cur) {
return v == held.get (cur)

&& ' ((LSet)v) .isEmpty () ;

Perspective

The 6o0d Rough Edges
* JIT works great * JIT is moving target...

* Efficient & Scalable * Further scalability
- Eclipse, dacapo (mostly),... - mitigate memory overhead
- offline instrumentation
* Event model matches

analysis specification «Hard JVM features
- custom class loaders

* Uniform comparisons - native code
- serialization
* Tool composition - native libs
- prototyping
- debugging * Not C/C++

- profiling

DATACOLLIDER:
(NEAR) ZERO-OVERHEAD
DATA-RACE DETECTION

A Data Race in Windows

RunContext(...) RestartCtxtCallback(...)
{ {
pctxt->dwfCtxt &= '
~CTXTF_RUNNING;

pctxt->dwfCtxt |=
CTXTF_NEED_CALLBACK;

- Clearing the RUNNING bit swallows the setting of the
NEED_ CALLBACK bit

- Resulted in a system hang during boot
- Reproducible only on one hardware configuration
- This bug caused release delays on said system
- The hardware had to be shipped from Japan to Redmond for debugging

L
DataCollider

- A runtime tool for finding data races
- Low runtime overheads

- Readily implementable

« Works for kernel-mode and user-mode Windows programs

- Successfully found many concurrency errors in

- Windows kernel, Windows shell, Internet Explorer, SQL server, ...

False vs. Benign Data Races

4) 4)
LockAcquire (1); | LockAcquire (1); '

False

gRefCount++; > | gRefCount++;

gStatsCount++; Benign LockRelease (1);

LockRelease (1);

> “ Destructive

gStatsCount++;

gRefCount++;

e iy

Existing Dynamic Approaches for Data-Race
Detection

- Log data and synchronizations operations at runtime

- Infer conflicting data access that can happen concurrently

« Using happens-before or lockset reasoning

LockAcquire (1);
gRefCount++;

hapbensbetore LockRelease (1);

LockAcquire (1);
gRefCount++;
LockRelease (1);

happens-before gRefCount++; P

L
Challenge 1: Large Runtime Overhead

- Classic example: Intel Thread Checker has 200x overhead

« BOE calculation for logging overheads
- Logging sync. ops ~ 2% to 2x overhead
 Logging data ops ~ 2x to 10x overhead
- Logging debugging information (stack trace) ~ 10x to 100x overhead

- Large overheads skew execution timing
- A kernel build is “broken” if it does not boot within 30 seconds

- SQL server initiates deadlock recovery if a transaction takes more than
400 microseconds

- Browser initiates recovery if a tab does not respond in 5 seconds

- New techniques (e.g. FastTrack) reduce overhead, but ...

Challenge 2: Complex Synchronization
Semantics

- Correctness depends on *exact™ knowledge of synchronization

- Synchronizations can be homegrown and complex
- (e.g. lock-free, events, processor affinities, IRQL manipulations,...)

- Missed synchronizations can result in false data races

AcquireMutex(gLock); AcquireMutex(gLock) ;
gRefCount++; gRefCount++;
ReleaseMutex(gLock); ppens-before ReleaseMutex(glock);

OpenFile(“foo”, EXCLUSIVE);
gRefCount++;
CloseFile();

OpenFile(“foo”, EXCLUSIVE);
gRefCount++;

happens-before CloseFile();

Challenge 2: Complex Synchronization
Semantics

- With multiple levels of interrupts, what is a thread?
- In some ways each <thread, interrupt level> is its own execution entity
- However, pre-thread data is shared across levels
- Interrupt levels are their own form of synchronization

Device: :OnInterrupt()
{ Device.Buffer =
ReadHw();

}

Lo

Device.Buffer = {0};
Device.SendWorkToHw();

Device: :OnInterrupt()
{ Device.Buffer =
ReadHw();

}

|

RaiseIrql (INTERRUPT_LEVEL);
Device.Buffer = {0};
LowIrql();

SetAffinity/RaiseIrql();
inc RefCount[CurrentProc()]
ClearAffinity/LowerIrql();

SetAffinity/RaiseIrql();
inc RefCount[CurrentProc()]
ClearAffinity/LowerIrql();

L
Challenge 3: Actionable Data

- Information about data races help only insofar as it identifies
the root cause

- Recording the state of the program is expensive for methods
that use logging

- Any data needed for debugging must be recorded for every memory
access that could potentially be part of a data race.

- E.g. If a stack trace is desired, then every memory access that might be
part of a data race must have the stack trace stored.

e
DataCollider Key ldeas

- Cause a data-race to happen, rather than infer its occurrence

« No inference => oblivious to synchronization protocols
- Catching threads “in the act” => actionable error reports

- Use hardware breakpoints for hooks and conflict detection

« Hardware does all the work => low runtime overhead

- Use sampling
- Randomly sample accesses as candidates for data-race detection at a

user-controlled overhead

L
Algorithm

Randomly Spl’ink|e code breaprintS on | PeridoicallyInsertRandomBreakpoints();
memory accesses | OnCodeBreakpoint(pc) {

// disassemble the instruction at pc

When a code breakpoint fires at an access to X | (oc, size, iswrite) = disasm(pc);

- Set a data breakpoint on x | temp = read(loc, size);
. : _ if (isWrite)
- Delay for a small time window SetDataBreakpointRW(loc, size);
else

SetDataBreakpointW(loc, size);

Read x before and after the time window

del H
- Detects conflicts with non-CPU writes elay0

i x 2 ClearDataBreakpoint(loc, size);
« Or writes through a different virtual address
temp’ = read(loc, size);

? if(temp !'= temp’ || data breakpt hit)
Ensure a user-defined number of code- | ReportDataRace();

breakpoint firings per second

e
Sampling: What's the tradeoff?

- Short answer: It’s up to the user!

* Long answer
- Tradeoff: overhead vs. likelihood of finding a data race
- User controls breakpoints/second & delay length

- Optimal usage?
- # of threads >= (# of HW watchpoints (4 on x86) + # of
processors), lots of both!

- Processors are always busy

Sampling w.r.t. Software Projects

- Bug bar: how likely would it be that a customer would
hit this data race?

- Lower overhead better approximates actual usage

- A data race found only at high overheads should be
rarely encountered by end users

- Controlling the overhead can be a way of prioritizing
data races

Sampling Instructions

- Challenge: sample hot and cold instructions equally

- A
if (rand() % 1000 == 0)
{
cold ();
}
else
{
hot ();
}

. A

e
Sampling Using Code Breakpoints

- Over time, code breakpoints aggregate towards cold-
instructions
- Cold instructions have a high sampling probability when they execute

- Samples instructions independent of their execution frequency
- Hot and code instructions are sampled uniformly

- Cold-instruction sampling is well-suited for data-race detection
« Buggy data races tend to occur on cold-paths
- Data races on hot paths are likely to be benign

Experience from DataCollider

- All nontrivial programs have data races

- Most (>90%) of the dynamic occurrences are benign

- Benign data race = The developer will not fix the race even when given
infinite resources

- Many of the benign data races can be heuristically pruned
« Races on variables with names containing “debug”, “stats”
- Races on variables tagged as volatile

« Races that occur often

- Further research required to address the benign data-race
problem — e.g. Adversarial memory & PortEnd

Data Race Category Count
Beni Statistic Counter 52
H:nu;g; ically gafe .Flag UPdate 29
Praned pecial Vanable 5
Subtotal 86
. Double-check locking | 8
aﬁil— Volatile 8
y Write Same Value 1
Pruned Other)
Subtotal 18
Real Confirmed 5
Investigating 4
Subtotal 9

Future Work

- Different sampling distributions
- Placing statistical preference on “interesting” instructions per static
analysis
- Different sampling rates

- Breakpoints per second is abstract

* Automated optimization Hypothetical Distribution for Optimization

Unique Races

y =
|
Delay Frequency

Delay Length

DataCollider Conclusion

- Puts the user in control of the overhead
- Fundamentally incapable of false data races

- Trivial to implement - requires no knowledge of
synchronization methods

- Sampling is biased toward user-scenarios, but converges
to a uniform distribution of static instructions

- Provides full debugging information (e.g. full memory
dump)

CUZZ: CONCURRENCY FUZZING
FIND RACE CONDITIONS WITH
PROBABILISTIC GUARANTEES

Cuzz: Concurrency Fuzzing

- Disciplined randomization of thread schedules

- Finds all concurrency bugs in every run of the program
- With reasonably-large probability

- Scalable

« In the no. of threads and program size

- Effective
- Bugs in IE, Firefox, Office Communicator, Outlook, ...
« Bugs found in the first few runs

Concurrency Fuzzing in Three Steps

Parent Child

void* p = malloc;

r

1. Instrument calls to Cuzz

2. Insert random delays

CallCuzz(); Init();
Cr‘eateThd(child); DOMOI‘EWOI‘k()_;
RandDelay(); free(p);
p->f ++;
N
free(p);
i

3. Use the Cuzz algorithm

to determine when and
by how much to delay

—

This is where all
the magic is

Find all “use-after-free” bugs

All nodes involve the use and free
ThreadCreate(...) of some pointer

if b frees a pointer used by g, the following
execution triggers the error

(o>

SetEvent (e)

(9

o ThreadJoin (...)

WaitEvent (e)

e
Find all “use-after-free” bugs

Problem:
For every unordered pair, say (b,g),
cover both orderings:

e.g.

—»(p—>(g (g
—>g—>(p>or>

ThreadCreate(...)

SetEvent (e)

(9

6 ThreadJoin (...)

WaitEvent (e)

Find all “use-after-free” bugs

Approach 1: enumerate all interleavings

Find all “use-after-free” bugs

Approach 2: enumerate all unordered pairs
* b->g
e g->b
e b->h

Find all “use-after-free” bugs

Two interleavings find all use-after-free bugs

(@b o> (g (>
(@@ (> e

Find all “use-after-free” bugs

Two interleavings find all use-after-free bugs

(@b o> (g (>
(@@ (> e

Cuzz picks each with 0.5 probability

Find all “use-after-free” bugs

- For a concurrent program with n threads
- There exists n interleavings that find all use-after-free bugs
» Cuzz explores each with probability 1/n

e
Concurrency Bug Depth

- Number of ordering constraints sufficient to find the bug
- Bugs of depth 1

- Use after free
- Use before initialization

B: fork (child); CFo
C: p = malloc(); . G: do_init();
D: ... \~ H: p->f ++;
E. ... [

; B

\ y

Concurrency Bug Depth

- Number of ordering constraints sufficient to find the bug
- Bugs of depth 2

- Pointer set to null between a null check and its use

(A 4 N
. B: p =malloc(); CH: .
. C: fork (child); — |: p = NULL;

| D /’J:
| E: if(p!=NULL‘/
- F: p->f++; !

. G: K /

Cuzz Guarantee

- n: max no. of concurrent threads (~tens)
- k: max no. of operations (~millions)

- There exists n.4#Td—1 interleavings that find all bugs of depth
d

- Cuzz picks each with a uniform probability

- Probability of finding a bug of depth d =1 /72.ATd—1

L
Cuzz Algorithm

Inputs: n: estimated bound on the number of threads
k: estimated bound on the number of steps
d: target bug depth

// 1. assign random priorities >= d to threads
fortin[1..n] do priority[t] = rand() + d;

// 2. chose d-1 lowering points at random
foriin[1...d) do lowering]i] = rand() % k;

steps = 0;
while (some thread enabled) {
// 3. Honor thread priorities
Let t be the highest-priority enabled thread;
schedule t for one step;
steps ++;

// 4. At the ith lowering point, set the priority to i
if steps == lowering][i] for some i
priority[t] = i;

Empirical bug probability w.r.t

worst-case bound
 Probability increases with n, stays the same with k

- In contrast, worst-case bound = 1/nk9!

0.025

=== jtems
el 16 items
64 items

0.02

o
o
=
(6}

°
o
=

Probability of finding the bug

2 3 5 9 17 33 65
Number of Threads

Why Cuzz is very effective

* Cuzz (probabilistically) finds all bugs in a single run

- Programs have lots of bugs

« Cuzz is looking for all of them simultaneously

 Probability of finding any of them is more than the probability of
finding one

- Buggy code is executed many times
- Each dynamic occurrence provides a new opportunity for Cuzz

Conclusions

- Two tools for finding concurrency errors

- DataCollider: Uses code/data breakpoints for finding data races
efficiently
- Cuzz: Inserts randomized delays to find race conditions

- Both are easily implementable
- Email: madanm@microsoft.com for questions/availability

ADVERSARIAL MEMORY FOR
DESTRUCTIVE RACES

Beyond Detecting Data Race Conditions

e Checkers can find real race conditions

* But which race conditions are real bugs?
- that cause erroneous behaviors (crashes, etc)
- and are not "benign race conditions”

Large Multithreaded Application
! !

Imprecise Race Detector
Eraser [SBN+ 97]
MultiRace [PS 07]
RacerX [EA 03]

Precise Race Detector
JavaPathfinder

DJIT+ [ISZ 99, PS 03]
Goldilocks [EQT 07]

Relay [VJL 07]

FastTrack [FF 09]

RaceTrack [YRC 05] Pacer [BCK 10]
INAW 061, ..
v
@) 9 L \ 4
Potential Real 5 '
Destructive
DaTa Races Data Races Data Races
I.lne 10 line 10 line 57
line 23 line 57
line 57 &
(Y Y,

Destructive data race: erroneous observable behavior

Benign data race: not a bug

Controlling Scheduling Non-Determinism

e lhread A
_>e _ .
e p = new Pt();
—® p = null;
racy —®
Large read e Thread B
Concurrent —>9
APPli%a’rion :pr e a1l
—>® .draw () ;
Input —>® P
—e
—e
_>e
—e

(eg: CalFuzzer, DataCollider, etc.)

Memory Models

Memory [/O

/1 | Network \ >
@0 @

Chip Multiprocessor (CMP)

 Each processor/core has a cache

* When do writes to x become visible to other processors?
e Sequentially Consistent MM
e Relaxed MM (TMM, x86-TSO, etc.)

* more than one value written to x may be visible

Example
int x;
int y;
Initially x ==y == 0;

Thread A Thread B
x = 10; rl = vy,
y = 20; r2 = X;

print rl + r2;

What's Printed? 30? 20? 10? 0O?

Example

int x;
volatile int y;

Initially x == == 0;
Thread A Thread B
x = 10; rl = vy,
y = 20; r2 = x;

print rl + r2;

What's Printed? 307 2QQ 10? 0?

Adversarial Memory [Flanagan-Freund 10]

Large
Concurrent
Application

F212121

]

Input

2TR12T:

Adversarial
memory exploits
memory
nondeterminism.

Racy read
sees old value
likely to crash
application.

Complements
schedule-based
approaches, quite
effective.

Adversarial Memory [Flanagan-Freund 10]
Thread A

e
— _ .
e p = new Pt();
::: p = null;
Large Y, Thread B
Concurrent _®
Application T
T if p !'= null
.draw () ;
Input P

2TR12T:

Example

int x = 10;

x =0;

fork{ if (x '= 0) x = 50/x; }
x = 42;

* Data race on x
e Is this data race destructive?

* Can program divide by zero?

Sequentially Consistent Memory Model

int x = 10; * Intuitive memory model
x = 0; » Each read sees most recent write
fork{ if (x !'= 0) x = 50/x; } * (No memory caches)
x = 42;
Q Px = 10
x =10
<=0 x =0
fork fork
x = 42
r = x ® Pr =x
r 1= O? r = 0?
r = X
x = 42 r = 50/r
(‘_’) X =r
5

Java Memory Model

Happens-Before Partial Order

int x = 10;

x = 0;

fork{ if (x '= 0) x = 50/x; }

x = 42;

Ox = 10 <— not visible
x =0 <— visible
fork
X = 42 <— visible

Q@

i r = X
! r '= 0°?

r 50/r
X =r

* Program order edges
* Fork edges
* Release-acquire edges, ...

Java Memory Model

Read R can "see” previous write W1
if no intervening write W2 with
W1<W2<R

(This is a JMM subset;
JMM can see some future writes
and admits additional behaviors)

Jumble

int x = 10; Record:
x = 0; .
fork{ if (x 1= 0) x = s0/x; 3 * Write buffer for racy vars
x = 42; * happens-before relation
P« = 10 < notvisible At each read:
x =0 <— visible « determine visible writes
fork » return old writes to crash app
|X = 42\ < visible with higher probability than
@ typical memory impl.
| r = x
: r '= 07
i B heuristically pick O

r
(,,)x = r division by zero

ol %o Q<: Xl ®|lo

10

42

50/r

Write Buffer for x:

l@A: 10

l@A: 10 | 2@A: 0

l@A: 10 | 2@A: 0

l@A: 10 | 2@A:0 | 4@A: 42

10

42

1@A: 10

l@A: 10 | 2@A: 0

1@A: 10 | 2@A: 0

1@A: 10 | 2@A: 0

A@A: 42

Read by B at [3,1]

Visible:

2@WA: 0

A@A: 42

Pick 42

10

42

l@A: 10

1@A: 10 | 2@A: 0

@ Read by B at [3,3]
Visible: | 2@A:0

1@, 4@A: 42
Pick O

| @be—ro——rr T

1@A: 10 | 2@A: 0 | 4@A: 42

10

42

l@A: 10

l@A: 10 | 2@A: 0

l@A: 10 | 2@A: 0

l@A: 10 | 2@A:0 | 4@A: 42
l@A: 10 | 2@A:0 | 4@A:42
l@A: 10 | 2@A:0 | 4@A: 42

Div By O

CRASH!

/
I RoadRunner Event
(,) Stream
Instrumented { Monitor) A: d(x)
Bytecode s T Ylte
SR t 42
ﬁ gbs’rmc’r S’ra’r) eR
[Instmﬂnenfer] _ Y,
N 2

]

Java
Bytecode

Jumble Performance

* Keep write buffers only for small # of locations
- all instances of a particular field declaration
- array sampled at indexes O and 1 (configurable)

e Slowdown of 1.2x to bx

* Write buffers limited to 32 entries
- eject writes when no longer visible or redundant
- some capacity ejects

Jumble Precision: failures out of 100 runs

Benchmark: racy field Julr\ln(ljole SC | Oldest E)L:lesé Random R;)ellﬂcij?frp
montecarlo: DEBUG 0 0 0 0 0 0
mtrt: threadCount 0 0 0 0 0 0
point: p 0 0 0 0 0 0
point: x 0 0 60 52 32 30
point: y 0 0 48 53 27 30
jbb: elapsed_time 0 0 100 0 15 5
jbb: mode 0 0 100 100 95 98
raytracer:.checksum1 0 0 100 100 100 100
sor: arrays 0 0 100 100 100 100
lufact: arrays 0 0 100 100 100 100
moldyn: arrays 0 0 100 100 100 100
tsp: MinTourLen 0 0 100 100 100 100

- 27 fields with data races
- ran Jumble manually once for each field
e - found 4 destructive data races

11 Java;
arks o {s] arks of Sun Microsystem:
both. Eclipse is a trademark of the Eclipse Foundation, Inc

ipse

Europa
120070205-0009

Jumble Summary

» Identifying destructive data races
- very difficult, time consuming, error prone

* Adversarial memory automates identification

- reveals destructive data races with high
confidence

- helps focus effort on fixing real bugs

Where To Go From Here?

* [Much work on all of these problems, some by the audience, by us, ...]
* Performance, performance, performance ...

- always-on detection, HW support,

- static-dynamic hybrid analyses, language support
e Is sampling the way to go for debugging?

- Does it miss rare data races?
 Prioritize and deal with benign data races

- which data races are most critical?
e How to respond to data races?

- warning / fail-fast / recovery
» Reproducing traces exhibiting rare data races

- record and replay
* Generalization

- reason about traces beyond the observed trace
* Finding memory model problems

Acknowledgments

* Some of our presentation on background
material is based on slides from Dan Grossman

- http://homes.cs.washington.edu/~djg/slides/
grossman_russia_dataraces.pptx

* Thanks to Shaz Qadeer, Tom Ball, and Cormac
Flanagan for valuable feedback on this
presentation

Key References

Hans-J. Boehm and Sarita V. Adve, "You Don't Know Jack About
Shared Variables or Memory Models", CACM 2012.

Leslie Lamport, "Time, Clocks, and the Ordering of Events in a
Distributed System", CACM 1978.

Martin Abadi, Cormac Flanagan, and Stephen N. Freund, "Types
for Safe Locking: Static Race Detection for Java", TOPLAS
2006.

Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerard Basler,
Piramanayagam Arumuga Nainar, and Iulian Neamtiu, "Finding and
Reproducing Heisenbugs in Concurrent Programs"”, OSDI 2008.

Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg
Nelson, James B. Saxe, and Raymie Stata. "Extended static
checking for Java", PLDI 2002.

S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. E.
Anderson, "Eraser: A dynamic data race detector for multi-
threaded programs", TOCS 1997.

Key References

Friedemann Mattern, "Virtual Time and Global States of
Distributed Systems", Workshop on Parallel and Distributed
Algorithms 1989.

Yuan Yu, Tom Rodeheffer, and Wei Chen, "RaceTrack: Efficient
detection of data race conditions via adaptive tracking", SOSP
2005.

Eli Pozniansky and Assaf Schuster, "MultiRace: Efficient on-the-fly
data race detection in multithreaded C++ programs", Concurrency
and Computation: Practice and Experience 2007.

Robert O'Callahan and Jong-Deok Choi, "Hybrid Dynamic Data Race
Detection", PPOPP 2003.

Cormac Flanagan and Stephen N. Freund, "FastTrack: efficient and
precise dynamic race detection", CACM 2010.

Cormac Flanagan and Stephen N. Freund, "The RoadRunner dynamic
analysis framework for concurrent programs", PASTE 2010.

Key References

e John Erickson, Madanlal Musuvathi, Sebastian Burckhardt, Kirk
Olynyk, "Effective Data-Race Detection for the Kernel", OSDI
2010.

e Madanlal Musuvathi, Sebastian Burckhardt, Pravesh Kothari, and
Santosh Nagarakatte, "A Randomized Scheduler with Probabilistic
Guarantees of Finding Bugs", ASPLOS 2010.

* Michael D. Bond, Katherine E. Coons, Kathryn S. McKinley, "PACER:
proportional detection of data races", PLDI 2010.

e Cormac Flanagan and Stephen N. Freund, "Adversarial memory for
detecting destructive races", PLDI 2010.

