
Safe Asynchronous Exceptions For Python∗

Williams College Technical Note 02-2002, Dec. 2002

Stephen N. Freund Mark P. Mitchell
Department of Computer Science CodeSourcery, LLC

Williams College 9978 Granite Point Ct.
Williamstown, MA 01267 Granite Bay, CA 95746

Abstract

We demonstrate that the Python programming language
is not signal-safe, due to Python’s support for raising
exceptions from signal handlers. We examine the ap-
proaches that various languages have used when deal-
ing with the combination of asynchrony and exception
handling, and propose a modification of the Python lan-
guage that restores signal safety.

Keywords: programming languages, exceptions, asyn-
chronous signals, resource management, Python

1 Introduction

Asynchrony is a fact of life in computer systems. Many
programs must handle asynchronous events, such as
keyboard interrupts, timer alarms, and sensor activity,
to function properly. However, these events occur at
unpredictable points in time.

Python employs the signal model to capture asyn-
chronous events. Signals are used in both the UNIX
operating system and the C programming language.
When the operating system raises a signal, control is
transferred to a signal handler, i.e., a special purpose
routine designed to process the asynchronous event. Be-
cause the signal handler executes asynchronously, it can
make only very limited assumptions about the integrity
of data structures being manipulated by the remainder
of the program.1 When the signal handler returns, the
main program resumes from the point at which it was
interrupted.

Programmers often want to treat signals in the same
way that they treat error conditions. For example, a
program may recover from an error writing to an open
file and process a “keyboard interrupt” signal raised
during the write in much the same way. As we describe
below, Python combines error handling with signal han-
dling to enable them to be treated uniformly.

∗This work was presented at the Lightweight Languages Workshop,
Nov. 2002.

1For example, in C, it is not even valid to use printf in a signal
handler.

Python, like many recent languages, uses exceptions
to deal with error conditions and other similar prob-
lems. Exceptions are non-local gotos that transfer con-
trol from the point at which the exception is raised to an
exception handler. Exception handlers are dynamically
scoped; control is transferred to the innermost handler
of the appropriate type on the current call stack. Ex-
ceptions enable errors to propagate without the use of
cumbersome and error-prone return codes. Exceptions
also allow the authors of library modules to defer the
handling of errors to clients, under the assumption that
the client application is best able to decide how to deal
with the error condition.

To treat signals as exceptions, Python provides a
way to raise an exception within a signal handler, thereby
turning an asynchronous signal into an asynchronous
exception. Once raised, asynchronous exceptions are
handled using the exception handler mechanism for nor-
mal (synchronous) exceptions.

Unfortunately, the Python language’s transforma-
tion of signals into asynchronous exceptions is currently
not robust. Subtle race conditions actually make it im-
possible to write reliable code that handles signals in a
timely fashion. We propose a small modification to the
Python programming language to correct this problem
in a satisfactory way. Our extension, following the sug-
gestions in [4] for Haskell, introduces statements that
block and unblock asynchronous signal delivery in their
dynamic scope. These statements are 1) a simple ex-
tension to the Python language, 2) easy to implement,
and 3) intuitive.

The need for more a reliable asynchronous excep-
tion mechanism is not merely theoretical. One of the
authors uncovered the problem while trying to build
a robust software tool using Python. In addition, the
Python standard library itself contains several hundred
exception handlers to manage various resources, and all
of them may behave incorrectly in the presence of asyn-
chronous exceptions.

After showing how our extension solves the demon-
strated problem in an elegant way, we give an overview
of other ways in which various programming languages
have combined signals and exceptions.



2 Asynchronous Exceptions and Python

As we demonstrate in this section, Python does not en-
able programmers to write robust code in the presence
of asynchronous exceptions. The existing language fea-
tures to handle exceptions suffer from subtle race con-
ditions when asynchronous exceptions are generated in
signal handlers. This is a known pitfall that has also
appeared in other languages [8, 4].

Python models signal handling similar to the C pro-
gramming language. In particular, programs may regis-
ter signal handlers (i.e., Python functions) that are then
called when signals occur. For example, the following
Python program installs the handle alarm function as
the handler for the SIGALRM signal.

Figure 1: Signal Handlers

def handle alarm(signum, frame):

print "received alarm signal"

signal.signal(signal.SIGALRM, handle alarm)

...

The Python interpreter will call this function every time
the operating system generates a SIGALRM notifica-
tion.

The Python interpreter (written in C) implements
this functionality by setting a flag when a signal oc-
curs. Then, when iterating through the main byte code
execution loop, the interpreter notices that the flag has
been set, and begins interpreting the code that makes
up the signal handler, as if the next bytecode instruction
had been a subroutine call to the signal handler. Thus,
the Python interpreter partially synchronizes the sig-
nal. While the signal handler executes asynchronously
with respect to the main Python program, it executes
synchronously with respect to the Python interpreter,
i.e., it does not execute as part of a C signal handler.

Python explicitly permits signal handlers to raise
exceptions. For example, we could replace the print

statement in Figure 1 with raise TimeOutError to
raise an exception when the signal occurs. Also, Python’s
default signal handler for SIGINT (the interrupt signal)
raises the KeyboardInterrupt exception. This trans-
lation of asynchronous signals into exceptions is con-
venient; programmers can handle keyboard interrupts
as they would “file not found” or “permission denied”
errors.

As a result, however, Python programs must antic-
ipate the fact that exceptions can be thrown at any
point, i.e., exceptions are now asynchronous events. Com-
mon practice is to surround code in which the program-
mer wants to handle asynchronous exceptions with a
Python exception handler. However, this leads to a
number of race conditions, which are exemplified by the
following code:

Figure 2: Python Race Condition

f = open(file name)

try:

s = f.read()

finally:

f.close()

The semantics of Python’s try-finally construct
are that the code in the try block is executed and then,
whether the try block is executed normally or via an ex-
ception, the finally block is executed. This construct
is intended to be used, as shown above, to manage re-
sources robustly. This code attempts to ensure that the
file f will be closed even if an error occurs when reading
from the file. (The read function raises an exception if
data cannot be read.) Idioms similar to this code are
used to handle many different resources, including mu-
tex locks, network connections, and so on.

However, in the presence of signals, this code does
not perform as intended. In particular, consider the
case in which a signal occurs immediately after the call
to open, but before the interpreter has begun to ex-
ecute the try block. If the signal handler throws an
exception, the finally block is never executed. Simi-
larly, consider the case in which a signal occurs just as
the interpreter enters the finally block, but before the
call to close. If the signal handler throws an exception,
the interpreter will never call close. In both cases, the
program will leak the open file.2

2.1 Attempted Solutions and Their Pitfalls

There are no adequate solutions to avoid these prob-
lems. To illustrate the subtle interactions between sig-
nals and exceptions, we describe two suggested pro-
gramming practices to prevent race conditions and demon-
strate their weaknesses.

One approach is to explicitly block signals before the
call to open and unblock them after the call to close.
Although Python does not provide signal-blocking and
signal-unblocking routines in its library, it is easy to
write a C extension module that provides this function-
ality:

Figure 3: Python Race Condition

block all signals()

f = open(file name)

try:

s = f.read()

finally:

f.close()

unblock all signals()

2When Python garbage collects the file object, it will close the file,
but there is no guarantee that this will happen in a timely fashion. In

general, the resource might be one that Python will never deallocate.

2



While this approach does indeed avoid the race con-
ditions described above, it does not solve the problem
in a satisfactory way. In particular, if the body of the
try block contains a long-running computation, asyn-
chronous events may be blocked for an arbitrarily long
period of time, making the program unacceptably non-
responsive. Also, note that the call to open is now made
when signals are turned off. If the file is on a network
file system, and cannot be opened quickly, the user can
no longer interrupt the program. By moving the calls to
different locations, we can improve responsiveness—but
only at the cost of robustness.

Another approach is to explicitly reset the signal
handler to a routine that will never throw an exception.
Instead, the signal handler would queue the exception.
Later, at an appropriate point, the exception could be
thrown. This approach is not easy to get right, even if
it can be made to work. Signals must be blocked while
the signal handlers are being replaced, some provision
must be made to deal with the case in which signal han-
dlers are changed explicitly by code in the middle of the
try block, and it is difficult to handle the possibility of
multiple signals arriving during the try block.

Perhaps more importantly, both approaches suffer
from the fundamental defect that the programmer must
explicitly remember to insert code to block and unblock
signals, or to register and unregister signal handlers. We
also believe that requiring the programmer to match the
two separate operations correctly is dangerous. Other
paired operations, such as lock acquire and release, are
frequently used incorrectly, and we wish to avoid adding
a similar feature here.

3 Blocking and Unblocking Asynchronous

Exceptions

We now present a simple language extension to en-
able safe use of asynchronous exceptions in Python pro-
grams. Our proposal is based on features explored in
other programming languages, particularly in the con-
text of the Haskell programming language [4]. We ex-
plore the full design space for handling asynchronous
exceptions in the next section.

Our proposed modification to Python extends the
syntax with two additional scoped constructs—block

and unblock. The following program demonstrates the
constructs:

Figure 4: block and unblock

s0

block:

s1

unblock:

s2

s3

s4

The block and unblock statements disable and enable
asynchronous signal delivery in their dynamic scope.
Thus, no asynchronous exceptions will occur during the
execution of s1 or s4, but they may occur during the
execution of s0, s2, and s3. The block and unblock

statements can be arbitrarily nested with the obvious
meaning. Using block and unblock, we can rewrite the
code in Figure 2 to ensure that the file resource is never
left open while still enabling asynchronous exceptions
while using the file:

Figure 5: Revised Example

block:

f = open(file name)

try:

unblock:

s = f.read()

finally:

f.close()

With these extensions, the Python run time will de-
liver asynchronous exceptions only when control is in
the unblock statement. Thus, the race conditions de-
scribed above are eliminated. However, long-running
computations in the unblock block can still be inter-
rupted by an asynchronous event, and signals can still
be transformed into exceptions as appropriate. If open
may take a long time to complete, it too could be rewrit-
ten to use unblock to ensure that the user could inter-
rupt the call at appropriate times.

Note that the operators nest naturally and match
our intuition about when we would like to prevent asyn-
chronous exceptions from occurring.

3.1 Implementation

As described in Section 1, the Python interpreter queues
signals and only delivers them to the interpreted pro-
gram at the top of the interpreter’s main loop. This ma-
chinery makes it easy to embed implementations of the
block and unblock statements in the Python run time
with no measurable memory or performance penalty.

Activation records in the standard Python interpreter
contain a stack of information about exception handlers
in the dynamic scope of execution. We extended the
interpreter to record entries and exits for block and
unblock statements on this stack as well. We also mod-
ified the interpreter to deliver signals at the top of the
main loop only after inspecting this stack for the current
activation record and determining that signals are not
currently blocked. If signals are blocked, the interpreter
delays delivery until they become unblocked. When a
function is called, the interpreter pushes onto the new
activation record’s stack an indication of whether sig-
nals are currently blocked in the caller. This allows us
to avoid searching outside the current activation record
when determining if signals are blocked.

3



3.2 Higher-level Extensions

The block and unblock statements are relatively low-
level constructs, and we suggest providing “syntactic
sugar” for common, higher-level programming idioms.
Resource acquisition, usage, and release is one such id-
ioms, and extending Python to better handle this com-
mon case is straightforward once block and unblock

have been implemented. One possible way to provide
support for this feature is with the following extension:

Figure 6: Resource Management

initially:

f = open(file name)

try:

s = f.read()

finally:

f.close()

This extension is merely syntactic sugar for the ex-
ample above. The virtual machine blocks signal delivery
during the initially and finally fragments, but not
the try code fragment. All exits from the try section,
exceptional or not, will execute the finally. We be-
lieve that most code in initially and finally blocks
will run quickly and that latency in processing signals
will therefore not be unduly affected. Nested block and
unblock, or initially-try-finally, statements can
provide better fine-grained control over asynchronous
exception delivery when more subtle programming pat-
terns are employed.

As illustrated in [4], the proposed language exten-
sion can also easily model many other idioms involving
asynchronous signals or communication as well, includ-
ing parallel logical-or and timeouts. Clearly, features
must be added to a language with care, and it remains
to be seen which combination of low-level and high-level
constructs for dealing with asynchronous exceptions are
most appropriate, given the overall design and intended
use of Python.

3.3 Interruptible Operations

While the presented features are sufficient to prevent
the types of race conditions that are of greatest concern
to us, they still do not prevent all potentially bad be-
haviors. For example, an exception could be generated
after the call to f.read completes but before the return
value is assigned to s. In that case, the value just read
would be lost. As in the Haskell, we can address this
problem by permitting some low-level blocking opera-
tions, such as read to be interruptible, even when in-
side a block statement. With this extension, one could
write the following safer version of the code:

Figure 7: Interruptible read Operation

block:

f = open(file name)

try:

s = f.read()

finally:

f.close()

Either the call to read will be interrupted before any
input is actually read, or it will complete, in which case
we are guaranteed not to be interrupted before assigning
the result to s. Our initial prototype does not support
interruptible operations, although adding them would
be trivial. The more difficult issue would be identify-
ing which operations in the Python libraries should be
interruptible in this way, and annotating them as such.

4 Related Work

We have based our Python language extension on the
scoped block and unblock combinators designed for
Concurrent Haskell [4]. In some sense, the purely func-
tional nature of Haskell makes block and unblock the
ideal primitives. It is easy and natural to use the com-
binators in more complex ways to support higher-level
idioms. We believe that these operations are appropri-
ate for use in Python as well. They are a simple ex-
tension to the Python language, have a straightforward
and efficient implementation, and are flexible enough to
capture the most common idioms used in large systems.

The treatment of asynchronous signals and excep-
tions in other languages covers a broad-spectrum of pos-
sible solutions. We highlight representative language
features to demonstrate approaches, starting with the
most restrictive designs. In addition to language archi-
tectures that support signals generated by the under-
lying operating system, we look at languages providing
mechanisms to send signals between threads.

We begin with languages that prevent asynchronous
generation of exceptions. For example, the C++ lan-
guage specification forbids signal handlers from raising
exceptions [11]. Therefore, the programs must handle
signals by setting a global variable that can be polled
later to determine which signals have occurred.

Other languages support this type of polling dis-
cipline directly. In Modula-2+ [9] and Modula-3 [6],
one thread may send an asynchronous signal to another
thread, but delivery is delayed until the receiver indi-
cates interest in receiving notification by calling either
AlertWait or TestAlert. The TestAlert procedure
returns a boolean value indicating whether or not an-
other thread signaled an Alert for the currently exe-
cuting thread. When a thread calls AlertWait, it will
block until an Alert is raised, which causes the run time
to generate an exception to be handled by the blocked

4



thread. In effect, the alert polling process turns syn-
chronous signals into synchronous events. Another ex-
ample of this technique appears in Scsh, a dialect of
Scheme for systems programming [10].

To use this type of polling, it is necessary to include
calls to the polling routines in all libraries and code
segments that may be used in conjunction with asyn-
chronous events. This requirement makes it difficult to
reason locally about asynchrony and requires coordina-
tion throughout the entire program, which is a severe
handicap when building large systems.

A similar polling technique is used in Java to inter-
rupt sleeping threads. A thread can wake up a sleeping
thread by invoking the interrupt method on it. The
method invocation generates an InterruptedException

exception in the suspended thread, which is then caught
with a standard Java exception handler. If interrupt is
invoked on a running thread, no exception is generated.
Instead, a flag that can be tested later is set to indi-
cate the occurrence of the asynchronous interruption.
Libraries providing thread support, most notably the
POSIX threads interface (accessible from C and many
other languages), often define polling mechanisms to
handle thread cancellation [7].

Java originally provided methods to suspend, re-
sume, and stop threads asynchronously. However, these
features presented a number of significant safety prob-
lems [12]. For example, programs that suspend threads
while they hold locks became prone to deadlock, and
stopping threads outright prevents them from cleaning
up any resources and ensuring that data structures are
left in a consistent state. Sun deprecated these features
after the initial release of Java. Although suspend and
resume operations appear in other run-time architec-
tures, such as the Microsoft .NET framework thread
model and Ada tasks [2], separate threads cannot inter-
act via asynchronous exceptions.

The definition of Standard ML [5] originally included
an Interrupt exception that was generated on the SIG-
INT signal, which indicates a user interrupt. However,
the designers removed it because of the difficulty mod-
eling this behavior formally and problems similar to
those illustrated in Section 2. SML/NJ introduced a
more general signal handling mechanism [8] in its place.
When a signal is received in the new scheme, the run
time creates a continuation out of the currently execut-
ing thread. The continuation is then passed to the sig-
nal handler (which runs with further signals disabled),
and the handler may either resume the original con-
tinuation or transfer control to different thread after
it has finished its own processing. Although this tech-
nique provides some of the benefits of scoped block

and unblock constructs, the reliance on continuations
makes it inappropriate for Python.

Several Lisp dialects also provide support for lim-
ited asynchronous signals between concurrent threads,

primarily to allow speculative execution. In PaiLisp [3],
one thread may force a different thread to execute a con-
tinuation. In addition, QLisp provides a heavyweight
mechanism that allows easy destruction of a whole tree
of related threads, but this mechanism is too costly to
use in the types of programs considered here [1].

5 Summary

Asynchrony creates subtle, but notoriously complex,
problems for programmers. Programming languages
can provide a foundation for tackling these problems via
simple and effective features that handle asynchronous
events reliably. In this paper, we have identified one as-
pect of Python where this is currently not the case, and
we propose a straightforward extension to the language
to enable safe use of asynchronous exceptions. We hope
that the Python developers will seriously examine the
situation and adopt either our proposed solution or an-
other solution with similar properties.

The same (or closely related) problems with asyn-
chronous exceptions have surfaced in many languages,
including Haskell, ML, and Java, and we have shown
how these other languages have attempted to provide
safe asynchronous features. In addition to improving
Python, we hope that this paper encourages language
designers to deal with the subtle interaction between
signals and exceptions more proactively in the next gen-
eration of languages.

Acknowledgments

We thank Mike Burrows, John Mitchell, and the anony-
mous reviewers for comments on a draft of this paper.

References

[1] R. P. Gabriel and J. McCarthy. Queue-based multi-
processing lisp. In Proceedings of the 1984 ACM
Symposium on LISP and functional programming,
pages 25–44, 1984.

[2] International Organization for Standardization.
Ada 95 Reference Manual. January 1995.

[3] T. Ito and M. Matsui. A parallel lisp language pail-
isp and its kernel specification. In Proceedings of
the US/Japan workshop on Parallel Lisp on Par-
allel Lisp: languages and systems, pages 58–100.
Springer-Verlag New York, Inc., 1990.

[4] S. Marlow, S. L. Peyton Jones, A. Moran, and J. H.
Reppy. Asynchronous exceptions in Haskell. In
Proceedings of the ACM Conference on Program-
ming Language Design and Implementation, pages
274–285, 2001.

5



[5] R. Milner, M. Tofte, and R. Harper. The Definition
of Standard ML. MIT Press, 1990.

[6] G. Nelson. System Programming in Modula-3.
Prentice Hall, 1991.

[7] B. Nichols, D. Buttlar, and J. P. Farrell. Pthreads
Programming. O’Rielly, 1996.

[8] J. H. Reppy. Asynchronous signals in Standard
ML. Technical Report Technical Report TR90-
1144, Cornell University, August 1990.

[9] P. Rovner, R. Levin, and J. Wick. On extending
Modula-2 for building large, integrated systems.
Research Report 3, Digital Equipment Corporation
Systems Research Center, 1985.

[10] O. Shivers. Automatic management of operating-
system resources. In Proceedings of the ACM Inter-
national Conference on Functional Programming,
pages 274–279, 1997.

[11] B. Stroustrop. The C++ Programming Language,
Third Edition. Addison-Wesley, 1997.

[12] Sun Microsystems. Why are Thread.stop,
Thread.suspend, Thread.resume, and Run-
time.runFinalizersOnExit deprecated?, 2002. At
http://www.javasoft.com/.

6


