
PA 4: IC Dataflow Analysis & Optimization CSCI 434T
Fall, 2007

Overview

In this assignment, you will extend your compiler to support a general dataflow analysis frame-
work, and then you will optimize the TAC for each method in a program using dataflow information.

Implementation Details

[Note: I use the class names from my implementation below — you will probably need to convert them
to the names in your compiler.]

Control-flow Graph. You will first build a control-flow graph representation of the TAC for a method.
More specifically, you should design a package that builds a CFG for a method’s TACList. I suggest
that you use a simple representation where each CFG node is a single instruction. I provide a few
classes — all you need to write is a class to convert a TACList in a ControlFlowGraph object.

Generic Dataflow Analysis Framework. Your implementation of the dataflow analysis frame-
work will include a generic dataflow engine. This engine is implemented once and reused as the base
class for each analysis instance. Each analysis instance will describe the specific lattice and transfer
functions that it uses. The dataflow analysis provides a method that solves the dataflow equations
using the iterative algorithm explored in the homeworks. Additional methods will access to the IN
and OUT values for each basic block in the CFG, once the solution is computed. The dataflow analysis
engine is capable of performing both forward or and backward analyses.

Analysis Instances. You will then implement the following analysis instances:

• Live variables analysis: compute variables which may be live at each program point.

• At least one of:

– Constant folding analysis: determine variables whose values are constant.
– Available expressions: compute expressions available in all of the program executions.

Bonus points for implementing all three.

Optimization. Finally, you will use the results of the analyses that you have implemented to perform
the following optimizations:

• Dead code elimination: Removes code that updates variables whose values are not used in any
executions. This optimization will use the results from the live variable analysis.

• Constant folding: Uses the results from constant folding analysis and replace each constant vari-
able with the computed constant.

• Common subexpression elimination: Reuses expressions already computed in the program. Here
you will use the information computed with the available expressions analysis. If an expres-
sion is available before an instruction that re-computes that expression, you have to replace the
computation by the variable which holds the result of that expression in all executions of the
program. If there is no such variable, you will create a temporary variable to store the result of
the expression at the site where the expression is initially computed.
Common subexpression elimination should also remove redundant run-time checks such as array
bounds checks or null pointer checks. (In HW 10, redundant null-pointer check removal was

1

phrased as a separate analysis and optimization. You may do it that way as well, if you prefer,
although it should also fit nicely into CSE.)
Note that your CSE implementation will only find syntactically equivalent expressions. To do a
better job at finding common expressions, you may want to add a Copy Propagation pass as well.
This extension should be reasonably straight-forward, once you have the infrastructure built.

Command Line Invocation. As in the previous assignment, your compiler must be invoked with
a single file name as argument: java ic.Compiler <file.ic>. With this command, the compiler
will parse the input file, perform semantic checks, generate intermediate code, and build the control
flow graph. Then, it will perform various analyses and optimizations on the three-address code. In
addition to all of the options from the previous assignments, your compiler should support the following
command-line options:

• Option -dce for dead code elimination;

• Option -cfo for constant folding, if implemented;

• Option -cse for common subexpression elimination, if implemented;

• Option -opt to perform all optimizations.

• Option -printDFA to print the dataflow facts computed for each program point.

The compiler will perform the optimizations in the order they occur on the command line. The
above arguments may appear multiple times in the same command line — in that case the compiler
will execute them multiple times, in the specified order. The compiler should only perform the analyses
necessary for the optimizations requested.

When the -printIR also occurs on the command line, you must print the TAC before or after opti-
mizations, depending on where it occurs in the command line. For instance, with: -cfo -printIR -dce,
you must print the TAC after the compiler performs constant folding, but before it removes dead code.

Your compiler must also print out the computed dataflow information when supplied with the com-
mand line option -printDFA. Specifically, the compiler should print the dataflow information at each
point in the program for each analysis implemented. Make sure your output is readable. Each dataflow
fact must clearly indicate the program statement that it refers to, and whether it represents the infor-
mation before or after the statement.

Code Structure

You should extend your code base with three additional packages:

• cfg: Classes to represent and build a CFG for a TACList.

• dfa: Classes for the general dataflow solver, as well as the specific instances necessary for this
assignment and any supporting classes.

• opt: Classes to implement the three optimizations listed above.

I will give you a few starter files this week that will help you organize these three packages. Feel free
to use any or all of them, or ignore them if you prefer to write them in a different way.

BasicBlock and ControlFlowGraph. These two classes in cfg are simple classes that represent
one basic block and a control flow graph. Each basic block is restricted to one instruction, which is
sufficient for this assignment. (Having larger basic blocks is simply an optimization to avoid some
computation and space overhead for the analyses we are performing.) When constructing the CFG,
don’t forget to include dummy nodes for enter and exit. (These can hold a TACComment instruction,
a TACNoOp instruction, null, etc.). You should not need to modify these two classes, although you are
free to do so if you wish.

2

In addition to toString, the ControlFlowGraph supports generating dot files to show the control
flow graph graphically with the dotToFile method. If you generate a.dot. the following commands
will show you the graph:

dot -Tps < a.dot > a.ps
xv a.ps

DataFlowAnalysis. This general class for solving dataflow instances in dfa will be the superclass
of all analysis instances:

public abstract class DataFlowAnalysis<T> {

public DataFlowAnalysis(ControlFlowGraph cfg) { ... }
public void solve() { ... }
public T in(BasicBlock b) { ... }
public T out(BasicBlock b) { ... }

/*
* These six methods define a dataflow instance and are

* defined differently in each subclass.

*/
// return true iff the analysis is a forward analysis
public abstract boolean isForward();

// initial value for out[enter] or in[exit], depending on direction.
public abstract T boundary();

// Top value in the lattice of T elements.
public abstract T top();

// Return the meet of t1 and t2 in the lattice.
public abstract T meet(T t1, T t2);

// Return true if t1 and t2 are equivalent.
public abstract boolean equals(T t1, T t2);

// Return the result of applying the transfer function for
// instr to t.
public abstract T transfer(TACInstr instr, T t);

}

This class is parameterized by the type T, which is the type of value contained in the lattice. The
solve method is responsible for computing the solution for the CFG passed into the constructor. After
calling solve, the in and out methods can be used to access the dataflow facts for each basic block.

To use the framework, you extend this class with a new class — LiveVariableAnalysis, for
example — which defines the six abstract methods describing the lattice, transfer functions, meet
operator, boundary value, and direction of the analysis.

The starter code contains a very simple example analysis that determines whether TAC instruc-
tions are unreachable (because there is a return statement on all paths leading to them.) You can
use this analysis to help debug your algorithm, and to give you ideas on how to structure your other
analyses. You can often implement the transfer functions using the propagating visitor pattern, as I
illustrate in a variant of the unreachable analysis.

When implementing your analyses, make reasonable design choices about how to represent the
dataflow facts, and feel free to use the java.util collection classes wherever possible.

3

Optimization. This class in opt is the superclass for all optimizations:

public abstract class Optimization {

/**
* Apply the optimization to each Method in p.

* Return true if the TAC for any of them changed.

*/
public boolean optimize(Program p)

/**
* Apply the optimization to the method md.

* Return true if the TAC for the method changes

* at all.

*/
public abstract boolean optimize(MethodDecl md);

}

To create an optimization, simply create a subclass of Optimization and define optimize(md) to
compute dataflow information and perform the optimization on md. That method should replace the
method’s TAC list with the optimized version. You can either provide methods in your TACList class
to modify an existing list, or you can construct a new list to replace the old one.

The Optimization methods return true to indicate the something changed. While not required,
you can provide a -iter command-line option that iterative applies all optimizations over and over
again until no additional changes happen.

Schedule

There is one intermediate milestone for PA 4:

Tuesday, Nov. 20: Before you leave for Thanksgiving, your compiler should generate the Control Flow
Graph for a TACList and support the -printDFA option for at least one dataflow analysis.

Friday, Nov. 30: PA 4 is due. Your compiler should support the command line options listed above
for the optimizations you have implemented. Be sure to include in your writeup any important
details about the dataflow and optimization passes, a summary of your testing methodology, and
any known bugs.

Extensions

There are many, many optimizations that are possibly in your framework. If you want to try others,
have a look at:

• Copy Propagation

• Partial Redundancy Elimination.

• Loop Invariant Code Motion.

• Any other analysis from our discussions.

These would all make excellent extensions to PA 4.

4

