
PA 3: IC TAC and x86 Code Generation
CSCI 434T
Fall, 2007

Overview

In this assignment, you will implement:

• a translator to convert your AST intermediate representation to a TAC intermediate representa-
tion; and

• a back-end to generate unoptimized x86 assembly code.

Code generators, while intuitively no more complex than other parts of a compiler, are notorious for
subtle bugs. Start early, design your system before you start coding, and implement and test
your code incrementally.

Implementation Details

Three-Address Code. You will translate the code of each method to an appropriate sequence of
IR instructions. These will probably include the standard classes of instructions: unary and binary
operations, data movement instructions, labels and branch instructions, method calls, return instruc-
tions. However, you are responsible for choosing the particular instructions in each class. The TAC
description on the web page should serve as a reasonable starting point.

You must clearly describe your instruction set in the write-up.

Generating Three-Address Code. After deciding on a TAC instruction set, you will implement
a translation from your AST representation to TAC. Your translation phase must convert high-level
constructs such as if and while statements, short-circuit conditional expressions, break and continue
statements, etc. into low-level code using jump instructions. (Bonus points for having no consecutive
labels, no unnecessary jumps, etc. These are optimizations — do not implement them until you have
completed the basic assignment).

Your three-address code must also include appropriate run-time check instructions. For each array
access a[i] (read or write), the compiler must insert two checks before the actual instruction that
accesses the array: one check that tests if a is not null, and one that tests if the access is within bounds.
When translating the length-of expression a.length, the compiler must insert a null check for a,
followed by the instruction that retrieves the array length. To translate a dynamic array allocation
new T[n], the compiler must insert a check to verify that the array size n is positive.

For each field access o.f or method call o.m(), the compiler generates a null check for o before the
code that accesses the field or calls the method. The instruction generated for a method call o.m(...)
must have the receiver object o as its first argument, followed by the other explicit arguments. For
non-qualified calls m(...) where the invoked method m is virtual, the first argument of the call is
this.

Finally, to lower the concatenation of strings s + t to TAC, the compiler should generate a call to
the library function LIB stringCat(s,t).

Simple Code Generation. Next, you will translate your three-address code into x86 assembly code.
You will perform a straightforward, unoptimized code generation by translating each IR instruction
into a sequence of assembly instructions. The generated assembly code may be inefficient, but it must
be correct and it must match the semantics of the input program. Your translation must correctly
handle all of the following:

• Stack Frames. Generate the calling sequences before and after invoking functions, and at the
beginning and the end of each function (prologue and epilogue), as discussed in class. Registers

1



%eax, %ecx, and %edx are caller-save, and registers %ebx, %esi, %edi, %ebp, %esp are callee-
save. You must assume that the contents of caller-save registers might be destroyed at each
method call. On the other hand, if a function modifies these registers, it must restore them to
their original values before returning. The function parameters are being pushed on the stack by
the caller, in reverse order. That is, the first parameter is pushed last on the stack. The return
values are always passed in the %eax register.

• Variables. Each local variable will be allocated on the current stack frame at the beginning
of their enclosing method. Both local variables and method parameters will be accessed using
offsets in the current stack frame.

• Objects. For an object allocation expression new C(), your assembly code should invoke the
library function LIB allocateObject(s), which returns a reference to the newly allocated
object. The size s of the allocated object must accommodate all of the fields of the allocated
object, plus 4 bytes to store a reference to the dynamic dispatch table. After allocating space for
an object, your code must set up and use dispatch vectors (DV). For virtual calls o.m(...) the
code must look up the dispatch vector of object o for method m and perform an indirect call. For
method names in the generated assembly, use a naming scheme where a method m of a class A is
named A m. For field accesses o.f you must access the memory location at address o plus the
constant offset for field f. Field accesses of the form f are equivalent to this.f.

• Arrays and Strings. Arrays and strings will be stored in the heap. To create new arrays, use
the library function LIB allocateArray(n), which returns a reference to the first element of
a newly allocated array large enough to store n elements. The size of each array element has a
fixed value of 4 bytes and need not be passed to LIB allocateArray(n). This is the size for
all types in the language (booleans, integers, and references). The array allocation function also
stores the array length in the memory word preceding the base address of the array return (i.e.,
the location at offset -4).
String constants should be allocated statically in the data segment. Strings don’t have null termi-
nators; instead, each string is preceded by a word indicating the length of the string. The length
of a string should treat escaped characters such as \n as one single character.

• Run-time checks. You must implement the run-time check instructions present in your low-level
representation as sequences of assembly instructions that perform those checks.

• Library functions. Calls to these functions are translated into standard function call sequences,
using the naming convention illustrated above. For example Library.readi() should be con-
verted into a call to the function LIB readi in the assembly code. The code for these functions
will be available in the IC library.

• Main function. The assembly code must contain a global function named ic main. When a
program is executed, the run-time library will set up the command-line argument list as a valid
string[] object and then call your ic main. Given a program whose main method resides
in class A, the ic main function should create an A object and then invoke its main method,
passing along the provided argument list.

Package Structure. You should implement the new components of the compiler in the following
sub-packages of the ic package:

• the tac package for your TAC intermediate representation; and

• the cg package for your x86 code generation classes.

For the tac package, you are strongly encouraged to implement the TAC instructions as a collection
of classes that all extend an abstract TACInstr class, and to build a TACList class that stores a list
of TAC instructions. After translation TAC for your program, each method declaration in your AST
would then be decorated with a TACList. Several other TAC details:

2



• Note that the operands to most TAC instructions can be 1) program variables, 2) temporary
variables, or 3) constants. The design of your TAC classes should reflect this.

• You may wish to design your TACList and TACInstr classes to support a “visitor-style” traversal
to make it easy for clients to traverse and process TAC lists (for printing, generating x86 code,
etc.).

• To facilitate deciphering the compiler’s output and debugging your back-end, I encourage you to
design your TAC classes (and x86 code generator) to support String annotations on individual
instructions that can be subsequently printed out as “comments” in your output, as in:

label _if3: # true branch for if on line 3
...
t1 = x + 1 # line 11

Command line invocation. Your compiler will be invoked with a single file name as argument, as
in the previous assignment. With this command, the compiler will perform all of the tasks from the
previous assignments. Next, it will convert the AST into three-address code, and then it will generate
assembly code into a file with the same name as the input program, but with extension “.s”.

In addition to all of the options from the previous assignments, your compiler must support an
additional command-line options “-printIR”, which will print at System.out a description of the
three-address code for each method in the program. Be sure you indicate the class name and the
method name for each method. For readability, please separate the code for different methods by
blank lines.

Auxiliary Tools

Assembling and Linking. Given an input file file.ic, your compiler will produce an assembly
files file.s. You can then use an assembler to convert this assembly code into an object file file.o
and the linker to convert this object file into an executable file. While there are separate assembler
and linker tools, it is simplest to use gcc, the GNU C compiler, to do both steps for us:

gcc -g -o file.exe file.s libic.a

The library file libic.a is a collection of .o files bundled together, containing the code for the li-
brary functions that are defined in the language specification, along with run-time support for garbage
collection. The library uses a freely available conservative collector:

http://www.hpl.hp.com/personal/Hans_Boehm/gc

The -g flag to gcc will create executables that can be run inside gdb, the GNU debugger.
You can find the library file libic.a along with supporting material on code generation for this

assignment on the web site. The additional material includes documentation for the gdb; documenta-
tion for the x86 instruction set; and several example IC programs along with the corresponding x86
assembly code.

(You may also find it useful to look at the assembly code generated by a C compiler. You can do this
in gcc with the -S option. For example, gcc -S a.c generates the assembly code file a.s.)

GDB. GDB is a very powerful, but sometimes cryptic, debugger. You are strongly encouraged to use
it to help debug your code generator. The online documentation available on the links page provides
many details, but the following are the most important commands for us. To run GDB on a file t.exe,
simply run gdb t.exe on the command line after generating t.exe, as described above.

3



Command Meaning
br ic main Set a breakpoint at the start of ic main.
r or run Run the program.
s or step Execute one instruction.
n or next Execute one instruction. If it is a function call,

run until the function call returns.
list Print out the code around the current program

counter.
info registers Print out the contents of the registers.
help Prints help info.
x address Print the contents of the given memory ad-

dress. Type help x for more details.
bt Show the call stack.
quit Quit the debugger.

Typically, you will start gdb, set a break point at main, type run, and then step through and inspect
your program’s data from that point on.

Schedule

There is one intermediate milestone for PA3. All deadlines are at 5pm. Be sure to add javadoc com-
ments to your code to document any special cases, describe tricky parts, and provide an overview of how
any non-trivial class is designed. (Comments have been a little sparse on the previous assignments...)

Friday, Nov. 2: Your compiler must support the -printIR option to print out the TAC instructions
for each method. You must extend the write-up to include a description of your TAC instruction
set, and any salient issues from your implementation. By this checkpoint, you are also strongly
encouraged to have your compiler compute the object offset for each declared field; the dispatch
vector index for each declared method; and the offset from the frame pointer for each declared
parameter and local variable (including the temporaries created during TAC generation). This
information can simply be stored in the parse tree and printed by an extension of your pretty
printer.

Friday, Nov. 9: PA 3 due. Be sure to include in your writeup any important details about the TAC
and Code Generation passes, a summary of your testing methodology, and any known bugs.

4


