
PA 2: IC Syntax and Semantic Analysis
due: 5pm, Friday, Oct. 26

CSCI 434T
Fall, 2007

Overview

In this programming assignment, you will implement the syntax and semantic analysis phases for
IC. These phases require you to write the parser, the AST and the symbol table packages, and the type
checker.

Details

You are required to implement the following:

• The parser. To generate the parser, you will use Java CUP, a LALR(1) automatic parser gener-
ator for Java.∗ A link to Java CUP is available on the course web site.
You will use the grammar from the IC language specification as a starting point for your CUP
parser specification. You must modify this grammar to make it LALR(1) and get no conflicts when
you run it through Java CUP. The operator precedence and associativity must be as indicated in
the IC specification. You are allowed to (and should!) use Java CUP precedence and associativity
declarations.
You should use the parser only to build the AST. Separate passes over the AST will build the
symbol tables and perform the semantic checks, after the program has been parsed and the AST
has been constructed.

• AST construction. Design a class hierarchy for the abstract syntax tree (AST) nodes for the
IC language. When the input program is syntactically correct, your checker will produce a cor-
responding AST for the program. The abstract syntax tree is the interface between the syntax
and semantic analysis, so designing it carefully is important for the subsequent stages in the
compiler. Note that your AST classes do not necessarily correspond to the non-terminals of the
IC grammar. Use the grammar from the language specification only as a guideline for designing
the AST. Once you have designed the AST class hierarchy, extend your parser to construct ASTs.
Your AST nodes should implement the Visitor pattern, as explored in the homework. Both the
standard visitor and the propagating visitor will be very useful.

• Symbol Tables and Types. Then design the symbol table structures and any additional struc-
tures you wish to use for representing program types. Your design should allow each AST node
to access the symbol table corresponding to its current scope (e.g. class, method, or block scope).
Your constructed symbol tables should be available to all remaining compilation phases, and I
recommend that all subsequent phases refer to program symbols (e.g., variables, methods, class
names, etc.) using references to their symbol table entries, and not using their string names.
In other words, each AST node containing a name should be given a second field that you fill
in during symbol resolution. This second field should contain enough information to uniquely
identify the declaration, type, etc. of the symbol being referenced. There are many ways to
accomplish this. Perhaps the most straightforward is to have the symbol table structure map
each string name to the AST node corresponding to the declaration of that name. Given that
structure, you can simply augment each AST node containing a name with a pointer to the AST
node for that name’s declaration, and fill in this pointer during name resolution. (This is briefly
described, along with alternatives, in Cooper and Torczon, Chapter 5.7.)

• Semantic checks. After you have constructed the AST and the symbol tables, your compiler will
analyze the program and perform semantic checks. These semantic checks include type-checking,
scope rules, and all of the other requirements described in the language specification.

∗LALR(1) parsers are essentially LR(1) parsers, except that they typically have a much smaller automaton.

1



• Error Handling. You must extend your error package with SyntaxError and SemanticError
exceptions, and have your compiler throw such exceptions whenever it encounters errors. These
exceptions must carry information about the error, such as the line number and a message de-
scribing the violation. You are not required to report more than one error; the execution may
terminate after the first lexical, syntactic, or semantic error. One should be able to fix the prob-
lem immediately after reading the error message.

Command line invocation. As in PA 1, your compiler will be invoked with the program file name as
an argument, with an optional “-d” flag:

java -classpath .:tools/java-cup-11a.jar ic.Compiler <file.ic>

You must include the java-cup-11a.jar file in the clas path. This JAR file contains definitions used
by the CUP-generated parser.

The compiler will parse the input file, construct the AST and symbol tables, perform the semantic
checks, and report any error it encounters. In addition, your compiler must support two command-line
options to print internal information about the AST and the symbol tables:

1. The “-printAST” option: prints a textual description of the constructed AST to System.out.

2. The “-printSymTab” option: prints a textual description of the symbol tables to System.out.

These options should appear after the filename, as in:

java -classpath .:tools/java-cup-11a.jar .ic.Compiler <file.ic> -printAST

You can design your own textual description of the AST and symbol table structures, but make sure
your output provides all important information and is easy to read.

Package Structure. You should implement the new components of the compiler as the following
sub-packages of the ic package:

• the error module for error exceptions;

• the lex module for the ic.lex specification and associated classes;

• the parser module for the ic.cup specification and associated classes;

• the ast module for the AST class hierarchy;

• the symtab module for symbol tables; and

• the tc module for the type checker.

The dot Utility. You may find it helpful to use the graph visualization tools in the graphviz suite
of tools for printing out information about the AST and the hierarchy of symbol tables. You can find a
web information about this tool on the course web site. The most useful tool would be the dot program,
which reads a textual specification for a graph and outputs a graphical image (in PostScript format,
jpg, or other image formats). For instance, the dot specification for the AST of the statement x = y +
1 is:

digraph G {
expr [label="="];
lhs [label="x"];
rhs [label="+"];
leftop [label="y"];
rightop [label="1"];
expr -> lhs;

2



expr -> rhs;
rhs -> leftop;
rhs -> rightop;

}

and running the dot tool on a file containing this description, as described in HW 4, will produce a
graphical tree. However, using dot is not required.

Getting Started

For details on how to integrate your parser with the PA 1 lexer, you may wish to read Section 2.2.8
(Java CUP Compatibility) of the JFlex documentation, and Section 5 (Scanner Interface) of the Java
CUP documentation. In essence, you must replace the sym.java file in the lexer module with the
sym.java automatically generated by Java CUP. Also, you must either replace the Token class with
java cup.runtime.Symbol, or make Token a subclass of java cup.runtime.Symbol.

To simplify these steps, I have provided a PA2 starter project on the website. Even if you choose to
use your own lexer code, you should use this project, since it contains additional configuration details
to enable it to generate CUP parsers.

To set up the project, have one person from the group download and import it into Eclipse. Be sure
to select “Copy projects into Workspace” in the Import Dialog Box. Once imported, right-click
on the project name, select “Team -> Share Project...”, and add it to your SVN repository. After
you perform a commit, others will be able to check that file out through the SVN Repository Explorer.
(Recall that you get to that perspective by choosing “Open Perspective” from the menu and selection
“Other...” and then “SVN Repository Explorer.”

While debugging you parser, you may find it useful to run CUP in a mode that dumps the automaton
and parse table. To do so, run the following from the command line:

java -jar tools/java-cup-11a.jar -destdir ic/parser -dump ic/parser/ic.cup

(Running “make dump” in the pa2-starter directory will do the same.)

Submission

This is a substantial programming project. You have roughly 4 weeks to complete it — use your
time wisely. There will be intermediate checkpoints along the way. Please be sure that your SVN
repository contains up-to-date versions of the following by the submission deadlines listed below:

• All of your source code and test cases (in directories /ic and /test). As in the previous as-
signment, make sure your code is well-documented. I will generate javadoc documentation and
browse through your comments each week.

• A brief, clear, and concise design document. Place this document in /writeup. For the check-
point submissions, this document should contain a description of the overall design and major
data structures, a summary of your testing strategy, a list of known bugs or issues remaining
in the code, and so on. Simply continue to add to the document each week, so that by the final
submission deadline, it is a complete design document.

3



Schedule

These milestones are the minimal requirements for the checkpoints. You are of course welcome (if
not strongly encouraged) to do more by each deadline. All deadlines are at 5pm. The Mt. Day deadline
will be pushed back until Sunday evening.

Friday, Oct. 5: Your parser must successfully parse valid IC programs and report syntax errors in
bad ones. Your writeup must include an initial design of your AST package, including: 1) The
list of operations present in your root node class, and 2) a brief overview of the class hierarchy
of node types. This need not be very detailed, but it should at least demonstrate that you have
begun to think about how to lay out your ASTs.

Friday, Oct. 12: Your parser must generate ASTs for programs, and you must support the -printAST
command-line option.

Friday, Oct. 19: All of the above, plus your compiler must generate the symbol tables and perform
name resolution. At this point your compiler should implement the -printSymTab option. Addi-
tionally, you may wish to extend your AST printer to print out some indication of how each name
in the program has been resolved.

Friday, Oct. 26: PA 2 due.

4


