HW 3: Bottom-Up Parsing Techniques C%iﬁf,' 3351;

Overview
. " Intermediate Machine-
Source B Lexical B Syntax B Semantic B B B Code B Target
Program Analysis Analysis Analysis G Code_ Indgpgnd_ent Generation Program
eneration Optimization g

This week focuses on a second form of parsing, called bottom-up parsing. In contrast to top-down
parsing, this approach constructs the parse tree from the leaves up towards the root. As you will see,
this is quite a powerful technique. For example, bottom-up LR parsers can parse languages described
by a much larger class of grammars than LL parsers, and they more easily handle grammar ambiguity
of the form common in programming languages. (More on this second point next week when we build
the parser for IC...) As I'm sure you observed last week with LL parsing, the algorithms for building
parsers can be quite detailed. I strongly encourage you to follow the algorithms in the book carefully
as you work through these problems. I have also provided some optional reading and problems that
look more deeply at syntax error recovery.

Readings

e Dragon4.5-4.6,4.7-4.7.3,4.8.1-4.8.2
e (optional) 4.8.3
e (optional) Michael Burke and Gerald Fisher, A practical method for LR and LL syntactic error

diagnosis and recovery, 1987.

Exercises

1. Dragon 4.5.3

2. The following grammar describes the language of regular expressions:
R — RbarR| RR | Rstar | (R) | € | letter

where bar, star, letter, ’(, and ’) are all terminals. This is an ambiguous grammar. The Kleene
star operation has higher precedence than concatenation; and, in turn, concatenation has higher
precedence than alternation.

(a) Write a LR grammar which accepts the same language, respects the desired operator prece-
dence, and is such that alternation is left-associative, but concatenation is right-associative.
(Note: You need not prove that your grammar is LR.)

(b) Write the parse tree for the expression a|bc * d|e using the LR grammar.

3. Dragon 4.6.2. You will find it useful to construct the LR(0) automaton while you are building the
SLR items and the parsing table.

4. Dragon 4.6.3
5. Dragon 4.6.6

6. Consider the following grammar:
E — id|d(E)| E + id

(a) Build the LR(0) automaton for this grammar.
(b) Show that the grammar is not an LR(0) grammar by building the parsing table.
(c) Is this an SLR grammar? Give evidence.

(d) Is this an LR(1) grammar? Give evidence.
7. Consider the grammar of matched parentheses:
A — (A)A | e

(a) Construct the LR(1) automaton.
(b) Build the LR(1) parsing table to show that the grammar is LR(1).

(c) Is the grammar LR(0)? Justify your answer.

8. The following grammar describing expressions over addition, negation, and array accesses is

ambiguous:
E — E[E] (1)
| E+EFE (2)
| —E (3)
| id (4)

To generate an LR parser for this grammar, we could rewrite the grammar. However, it is also
possible to directly eliminate the ambiguity in the parsing table, taking advantage of precedence
and associativity rules.

(a) Build the SLR parsing table for this grammar. It will have conflicts.

(b) Given that + is left-associative and has a lower precedence than unary negation, and that
negation has lower precedence than array accesses, eliminate the conflicts by removing ac-
tions from the problematic table entries. Justify how you resolved conflicts.

(c) Show how your resulting parser handles the input id + id[id] + id.
9. Compare the LL(1) and LR(1) parsing techniques, indicating their advantages and disadvan-
tages. Develop a set of criteria for comparing parsing techniques and compare the two parsing

methods with respect to your criteria. Assume that automated tools are available for each tech-
nique.

10. (Optional) Here is a grammar similar to the one used to look at error recovery in LL parsers:

Stmt — if E then Stmt
| if E then Stmt else Stmt
| while E Stmt
| { List }
| s

ListTail — List ; Stmt
| Stmt
(a) Build a LR(0) parsing table for this grammar, resolving the dangling-else ambiguity in the

usual way. (My LR(0) automaton for this grammar has 18 states — I'll put a copy on the web
page for your reference.)

(b) Implement error correction by filling in the blank entries in the parsing table with extra
reduce actions or suitable error-recovery routines.

(¢) Describe the behavior of your parser on the following two inputs:
e if E then S ; if E then S }
e while E { S ; if E S ; }

11. (Optional) The Burke-Fisher paper describes a different approach to syntax error recovery for
parsers.

(a) What is their basic approach, and how does it differ from what you did last week (or in the
previous problem)? In particular, how does their error handling fit into the general parsing
algorithm? You may wish to focus only on the early sections involving single-token recovery.

(b) Are there advantages or disadvantages to this approach? Which would you prefer to use
while developing a compiler for a large language?

