
Lab 11
Due 14 May

Handout 15
CSCI 136: Spring, 2007

7 May

Flytrap Airlines

1 Short Answer

Bring answers to these questions to lab:

Problem 16.4

Problem 16.7

Problem 15.1

Problem 15.2

Problem 15.8

2 Lab Program

It’s about time to think about heading home for the summer. To facilitate your travel plans, your job

this week is to implement part of a flight reservation system for FlyTrap Airlines (FTA).

Welcome to FTA: You are now free to spin around the cabin infecting your neighbors.

The goals of the lab are the following:

• To gain additional experience manipulating graph data structures.

• To use Dijkstra’s algorithm to compute shortest paths.

2.1 The FTA Reservation System

The FTA reservation system implements six commands:

• help: prints out a help message.

1

• quit: quits the program.

• airports: prints all airports serviced by FTA, ordered alphabetically by airport code.

• flights <airport1> <airport2>: prints all direct flights from one airport to another.

• distance <airport1> <airport2>: prints the shortest path from one airport to another, us-

ing only routes flown by the airline.

• trip <airport1> <airport2> <time>: prints an itinerary for flying from one airport to an-

other on flights flown by FTA. It should print the flight that leaves the original airport after the

given time and arrives at the destination as early as possible.

Here is a sample run of the program with a small data set containing nine cities and roughly 500

flights.

enter command> airports
ALB: Albany, NY
DEN: Denver, CO
DFW: Dallas/Ft Worth, TX
IAD: Washington [Dulles], DC
JFK: New York [Kennedy], NY
ORD: Chicago [O’Hare], IL
PDX: Portland, OR
SEA: Seattle, WA
SFO: San Francisco, CA

enter command> flights ORD ALB
FTA 7600 ORD -> ALB 800 until 1056 (116 min)
FTA 7598 ORD -> ALB 1050 until 1347 (117 min)
FTA 388 ORD -> ALB 1320 until 1624 (124 min)
FTA 1448 ORD -> ALB 1750 until 2053 (123 min)
FTA 1108 ORD -> ALB 1805 until 2111 (126 min)
FTA 1572 ORD -> ALB 2045 until 2348 (123 min)
FTA 1070 ORD -> ALB 2055 until 2411 (126 min)

enter command> distance ALB PDX
Total Distance is 2391

ALB -> PDX 2391
enter command> distance SFO ALB
Total Distance is 2564

SFO -> ORD 1843
ORD -> ALB 721

enter command> trip SFO ALB 600
FTA 132 SFO -> ORD 630 until 1228 (238 min)
FTA 388 ORD -> ALB 1320 until 1624 (124 min)

enter command> trip SFO ALB 1600
Not possible.
enter command> trip SFO ALB 1200

FTA 212 SFO -> IAD 1245 until 2043 (298 min)
FTA 7843 IAD -> ALB 2120 until 2243 (83 min)

enter command> trip ALB PDX 1000
FTA 7819 ALB -> IAD 1025 until 1150 (85 min)
FTA 353 IAD -> DEN 1155 until 1334 (219 min)
FTA 523 DEN -> PDX 1425 until 1604 (159 min)

enter command> quit

2

Your job will be to implement the airports, flights, distance, and trip commands. Most of

the code has been provided for you, including a basic implementation of Dijkstra’s algorithm. There

are two FTA data sets for you to use- small and large. Use the small data set while developing your

code. Once it is working, you can use the large data set, which has roughly 400 airports and 7,000

flights.

2.2 Program Structure

The starter code contains several classes for you to use.

• Airport: An airport object just contains an airport code (ALB,SFO, etc.) and a city name (Albany,

San Francisco, etc.).

• Flight: This represents one daily flight on FTA. A flight has a departure and arrival Airport, a

flight number, a departure and arrival time, and a duration (in minutes). Departure and arrival

times are encoded as integers. For example, 854 represents 8:54 a.m. and 1354 represents 1:54

p.m. Arrival time expressed in the local time of the arrival airport. For flights arriving after

midnight, the arrival time will be greater than 2400. Since flights cross time zones, the arrival

time may be different than just a departure time plus the duration.

• Route: A Route object represents one flightpath serviced by FTA. It contains the distance be-

tween the arrival and departure airport, and a vector of Flights operating on that route. The

flights are stored in an ordered structure, sorted by departure time.

• FlytrapAirlines: This class contains the schedule for the airline. The schedule instance

variable is a graph whose vertices are labeled with Airport objects and whose edges are labeled

by Route objects. In addition, the airports instance variable keeps a map from airport code to

Airport objects. We can use this to, for example, print an alphabetical list of airports or convert

a string like “SFO” to the Airport object stored in the schedule graph. This class already

contains code to read in the data files, build the schedule, and process some of the commands.

The code contains more detail about what exactly you should change.

The javadoc for the files is available from the class handouts page. Look through this documentation

before you start to work.

2.3 Programming Tasks

1. The starter code is available in the starter directory

/usr/mac-cs-local/share/cs136/labs/fta

The javadoc for the files is available on the class handouts page. Look through this documentation

before you start to work.

2. Implement the airports and flights commands. These commands should just extract the

appropriate information from the schedule graph and airports map.

3. Next, complete the implementation distance. The main routine to perform this operation is

printDistance, which uses two helper methods. The first, which I provide, is a basic imple-

mentation of Dijkstra’s algorithm to compute the shortest distances from a source Airport to all

reachable destinations. This method has the following signature:

/**
* An implementation of Dijkstra’s algorithm to compute route

* distances. You should not modify this method.

* @pre g is a schedule graph and start is a non-null Airport

* @post returns a map from Airport to (distance, previous-edge)

3

* Associations.

*/
protected Map<Airport,ComparableAssociation<Integer,Edge<Airport,Route>>>

dijkstra(Graph<Airport,Route> g, Airport start)

This method returns a Map, which has Airports as keys and Associations as values. The

Associations store pairs of the form (distance, previous-Edge). The edge is the last edge on the

shortest path from start to the Airport in question. The Association for the start is (0, null).

To finish implementing the distance command, you must write a method with the following

signature:

/**
* @pre distances is a map from Airport to (distance, previous-edge)

* Associations.

* @pre destination is the end of the route we are printing.

* @post Prints out the route distances from the source to destination

* by following the previous edges back to the source.

*/
protected void printShortestPath(

Map<Airport,
ComparableAssociation<Integer,Edge<Airport,Route>>> distances,

Airport destination)

This method should take the Map returned from Dijkstra’s algorithm and print out the edges on

the path from the start to the destination. You will need to trace back through the edges in the

associations stored in the map to do this.

4. Your last major task is to implement the trip command. The algorithm will be structured in

the same way as distance. You will need to write a second version of Dijkstra’s algorithm

that computes shortest paths based on arrival time rather than distance. In other words, the

shortest path from one Airport to another is a series of flights where the last flight arrives at the

destination earlier than the last flight on any other path from the start. Here is the signature of

this method:

/**
* An implementation of Dijkstra’s algorithm to compute earliest-arriving

* itineraries. You should modify this method to enqueue new possible

* itineraries into the priority queue.

* @pre g is a schedule graph and start is a non-null Airport

* @post returns a map from Airport to (arrival-time, previous-flight)

* Associations.

*/
protected Map<Airport,ComparableAssociation<Integer,Edge<Airport,Flight>>>

dijkstraEarliestArrival(Graph<Airport,Route> g,
Airport start,
int time)

The time parameter indicates the earliest time that you may leave the start airport. To support

this type of search, the Map returned from dijkstraEarliestArrival should map Airports
to (earliest-arrival-time, Flight) associations. You need to add code to dijkstraEarliestArrival
to insert new potential paths into the priority queue according to the arrival time metric. In or-

der for an itinerary to be valid, each flight segment should depart after the previous flight has

arrived. In reality one would want perhaps a half hour to switch planes, but ignore lay-overs for

now.

Once you have completed the modified Dijkstra’s algorithm, you should write the following method

to print out an itinerary:

4

/**
* @pre earliestArrivals is a map from Airport to

* (arrivalTime, previous-Flight) Associations.

* @pre destination is the end of the route we are printing.

* @post Prints out the flights from the source to destination (by

* following the previous flights back to the source.

*/
protected void printItinerary(

Map<Airport,
ComparableAssociation<Integer,Flight>> earliestArrivals,

Airport destination)

This method should be almost identical to printShortestPath.

5. Once it is working, change your program so that passengers are always given at least 30 minutes

between landing at an airport and departing from it. Be careful of how you do comparisons on

numbers representing time. I suggest adding a helper method

int differenceInMinutes(int time1, int time2)

that takes two times in 24-hour time and returns the difference between those two times in

minutes.

6. Feel free to add additional features to your system. Possible extensions include the following.

(a) Add commands to add/remove airports, add/cancel specific flights, etc.

(b) Find the longest route or itinerary with the largest number of connections. Dijkstra’s algo-

rithm will not work for these— why?

(c) Anything else you find interesting.

2.4 Deliverables

Submit your modified FlytrapAirlines.java file with turnin before the due date.

As in all labs, you will be graded on design, documentation, style, and correctness. Be sure to

document your program with appropriate comments, including a general description at the top of the

file, a description of each method with pre- and post-conditions where appropriate. Also use comments

and descriptive variable names to clarify sections of the code which may not be clear to someone trying

to understand it.

5

