
CS 134: 
Lists and Loops

Announcements & Logistics
• Homework 3 is due tonight @ 11 pm

• Lab 1 graded feedback was released on Wed

• Any problems?

• Lab 3 is today/tomorrow in lab

• A collection of word puzzles: can use your newly acquired

knowledge of strings, lists (today), functions and loops to solve them

Do You Have Any Questions?

Last Time
• Started discussing sequences in Python

• Focused on strings (sequences of characters)

• Discussed slicing and indexing of strings

• Learned about in operator to test membership:

• Note: There is also a not in operator

• Also learned about string methods .lower() and .upper()

• Note: There are also string methods .islower()

and .isupper() that return True if string is in lowercase/
uppercase, else return False

• Introduced for loops as a mechanism to iterate over sequences

Today’s Plan
• Discuss for loops in more detail

• Introduce a new sequence: Lists

• Apply indexing [], slicing [:], in, + operators to lists

• Continue building a collection of functions that iterate over sequences

(lists and strings)

Recap: Iterating with for Loops
• The loop variable (char and var in the examples below) takes on the

value of each of the elements of the sequence one by one

for var in seq:

 # loop body

 (do something)

• We used a for loop to iterate over the characters in a string (word)
and look for vowels (using isVowel() from last class)

Counting Vowels Revisited

Count is an accumulation variable, since we

accumulate the count (int) as we go through the loop.

Vowel Sequences Revisited
• We defined a function vowelSeq() that takes a string word as input and

returns a string containing all the vowels in word in the same order as they
appear. (using isVowel() from last class)

vowels is an accumulation variable, since we

accumulate characters (strings) as we go through the loop.

Moving on: Lists
• Lists are another type of sequence in Python

• Definition: A list is a comma separated sequence of values

• Unlike strings, which can only contain characters, lists can be collections
of heterogenous objects (strings, ints, floats, etc)

• Today we’ll focus on iterating over lists (i.e., looking at the elements
sequentially) using for loops

• In upcoming lectures we’ll focus on manipulating and using lists to store
dynamic sequences of objects

• Lists are:

• Comma separated sequences of values

• Heterogenous collections of objects

• Mutable (or “changeable”) objects in Pythons. In contrast, strings are
immutable (they cannot be changed).

• We will discuss mutability in more detail soon!

Lists

• We already saw several sequence operators and functions last time

• We looked at strings last time

• These apply to lists as well!

• We can do the following operations on lists:

• Indexing elements of lists using []

• Using len() function to find length of list

• Slicing lists using [:]

• Testing membership using in/not in operators

• Concatenation using +

Operations on Sequences

Operations on Sequences

Indexing lists using []

Finding length of list using len()

Slicing lists using [:] (can also use optional step)

Membership in Sequences
• Recall: The in operator in Python is used to test if a given sequence is

a subsequence of another sequence; returns True or False

not in sequence operator
• The not in operator in Python returns True if and only if the given

element is not in the sequence

Note that not in also works for strings

• We can use the + operator to concatenate lists together

• Creates a new list with the combined elements of the sublists

• Does not modify original lists

List Concatenation

aList is unchanged!

returns a new list with elements
from aList and bList

To change bList, we have to reassign bList to the new list

Looping over Lists
• We can loop over lists the same way we looped over strings

• As before, the loop variable iteratively takes on the values of each

item in the list, starting with the 0th item, then 1st, until the last item

• The following loop iterates over the list of ints, printing each item in it 

 

Exercise: countItem
• Let’s write a function countItem() that takes as input a

sequence seq (can be a string or a list), and an element el, and
returns the number of times el appears in the sequence seq. 
 

Exercise: countItem
• Let’s write a function countItem() that takes as input a

sequence seq (can be a string or a list), and an element el, and
returns the number of times el appears in the sequence seq. 
 

Another accumulation variable!

• Write a function that iterates over a given list of strings wordList,
returns a (new) list containing all the strings in wordList that start
and end with the same character (ignoring case). 
 

Exercise: wordStartEnd

• Step by step approach (organize your work):

• Go through every word in wordList

• Check if word starts and ends at same letter*

• If true, we need to “collect” this word (remember it for later!)

• Else, just go on to next word

• Takeaway: need a new list to accumulate desirable words 

• *Break down bigger steps (decomposition!)

• If word starts and ends at same letter :

• Can do this using string indexing

• Think about corner cases: what if string is empty? what about case?

Exercise: wordStartEnd

Exercise: wordStartEnd
• Write a function that iterates over a given list of strings wordList,

returns a (new) list containing all the strings in wordList that start
and end with the same character (ignoring case). 
 

Notice this syntax! We are adding word (a string) to result (a list).

result starts as an empty list

• A for loop body can contain one (or more!) additional for loops:

• Called nesting for loops

• Conceptually similar to nested conditionals

• Example: What do you think is printed by the following Python code?

Nested Loops

char1 = 1 char2 = a

char2 = c
char2 = b

char1 = 2 char2 = a

char2 = c
char2 = b

char1 = 3 char2 = a

char2 = c
char2 = b

Inner loop (w/ char2
and word2) runs to
completion on each

iteration of the outer
loop

• What is printed by the nested loop below?

Nested Loops

Inner loop (w/ suffixes)
runs to completion on
each iteration of the

outer loop (w/ prefixes)

Lab 3 Notes

Lab 3: Goals
• In this lab, you will accomplish two tasks:

• Construct a module of tools for manipulating strings and lists of
strings (in wordTools.py)

• Use your toolbox to answer some (fun?) trivia questions (in
puzzles.py)

• You will gain experience with the following:

• Sequences (lists and strings), and associated operators/methods

• Writing simple and nested for loops

• Writing doctests to test your functions

Testing Functions: Doctests
• We have already seen two ways to test a function

• You can run your code 1) interactively or 2) as a script

• Python's doctest module allows you to embed test cases and

expected output directly into a function’s docstring

• To use the doctest module, we must import it using:
from doctest import testmod

• To make sure the test cases are run when the program is run as a script
from the terminal, we then need to call testmod().

• To ensure that the tests are not run in interactive Python, we place this
command within a “guarded” if block:  
if __name__ == ‘__main__’:  

Testing Functions: Doctests

Run the doctests only when file is
executed as a script

