Notes

This homework has two types of problems:

Problems: You will turn in answers to these questions.

Pair Programming: This part involves writing both ML and Java code. You are required to work with a partner for this section. I will assume that you plan to work with the same partner you worked with on the last assignment unless you email me (dbarowy@cs.williams.edu) with your partner’s name by the evening of Wednesday, April 3.

Turn-In Instructions

You must turn in your work for this assignment in two parts, one for the Problems part and one for the Pair Programming part. You will be assigned two GitHub repositories.

Note that this assignment should be anonymized: neither your name nor your partner’s name should appear in any of the files submitted with this assignment except the file “collaborators.txt” (see below).

Problems: Problem sets should be typed up using \LaTeX{} and submitted using your cs334_hw6_<username> repository. For example, if your GitHub username is dbarowy, then your repository will be called cs334_hw6_dbarowy. Be sure that your work is committed and pushed to your repository by Wednesday, April 11 at 11:59pm.

If you discuss the problem set with your partner or with a study group, please be sure to include their names in a collaborators.txt file in your repository.

Pair Programming: Programming solutions should be typed up and submitted using your partner repository. For example, if your GitHub username is dbarowy and you are working with a partner whose username is wjannen, look for a repository called cs334_hw6_dbarowy-wjannen (usernames will be in alphabetical order). Be sure that your work is committed and pushed to your repository by Wednesday, April 11 at 11:59pm.

Java files should have a “.java” suffix. Standard ML files should have a “.sml” suffix. For example, the pair programming problem P1a should appear as the file pl1a.sml. Your code should be documented using comments.

Reading

1. (Required) Read Mitchell, Chapter 8.1–8.2 and Chapter 10.

Problems

Q1. (10 points) ... Exceptions

Consider the following functions, written in ML:

```ml
exception Excpt of int;
fun twice(f,x) = f(f(x)) handle Excpt(x) => x;
fun pred(x) = if x = 0 then raise Excpt(x) else x-1;
fun dumb(x) = raise Excpt(x);
fun smart(x) = (1 + pred(x)) handle Excpt(x) => 1;
```
What is the result of evaluating each of the following expressions?

(a) twice(pred,1);
(b) twice(dumb,1);
(c) twice(smart,0);

In each case, be sure to describe which exception gets raised and where.

Q2. (15 points) Equivalence of Abstract Data Types

The two implementations of a point abstract data type below are equivalent. Explain why any program using the first definition would return the same result a program using the second definition.

(* trig function for arctan(y/x) *)
fun atan(x,y) =
 let val pi = 3.14159265358979323844
 in
 if (x > 0.0) then
 Math.atan(y / x)
 else
 (if (y > 0.0) then
 (Math.atan(y / x) + pi)
 else
 (Math.atan(y / x) - pi))
 handle Div => (if (y > 0.0) then pi/2.0 else ~pi/2.0)
 end;

(* rectilinear coordinates *)
abstype point = Pt of (real ref)*(real ref)
with
 fun mk_Point(x,y) = Pt(ref x, ref y)
 and x_coord (Pt(x, y)) = !x
 and y_coord (Pt(x, y)) = !y
 and direction (Pt(x, y)) = atan(!x, !y)
 and distance (Pt(x, y)) = Math.sqrt(!x * !x + !y * !y)
 and move (Pt (x, y), dx, dy) = (x := !x + dx; y := !y + dy)
end;

(* polar coordinates *)
abstype point = Pt of (real ref)* (real ref)
with
 fun mk_Point(x,y) = Pt(ref (Math.sqrt(x*x + y*y)), ref (atan(x,y)))
 and x_coord (Pt(r, t)) = !r * Math.cos(!t)
 and y_coord (Pt(r, t)) = !r * Math.sin(!t)
 and direction (Pt(r, t)) = !t
 and distance (Pt(r, t)) = !r
 and move (Pt(r, t), dx, dy) =
 let
 val x = !r * Math.cos(!t) + dx
 val y = !r * Math.sin(!t) + dy
 in
 r := Math.sqrt(x*x + y*y);
 t := atan(x,y)
 end
end;
The types of the functions given in either declaration are listed in the following output from the ML compiler.

type point
val mk_Point = fn : real * real -> point
val x_coord = fn : point -> real
val y_coord = fn : point -> real
val direction = fn : point -> real
val distance = fn : point -> real
val move = fn : point * real * real -> unit

For the purposes of this question, concern yourself only with the outcome of evaluation. You should ignore differences like the speed of computation or consequences of round-off error.

Your proof should appeal to the principle of structural induction or related ideas. You need not give a detailed formal inductive proof; a simple informal argument referring to the principles discussed in class will be sufficient. You may explain what needs to be calculated, or what conditions need to be checked, without doing the calculations themselves. The point of this problem is not to review trigonometry. An answer consisting of 3-5 sentences should suffice.

Q3. (15 points) ... Expression Objects

We now look at an object-oriented way of representing arithmetic expressions given by the grammar

\[e ::= \text{num} | e + e \]

We begin with an “abstract class” called SimpleExpr. While this class has no instances, it lists the operations common to all instances of this class or subclasses. In this case, it is just a single method to return the value of the expression.

abstract class SimpleExpr {
 abstract int eval();
}

Since the grammar gives two cases, we have two subclasses of SimpleExpr, one for numbers and one for sums.

class Number extends SimpleExpr {
 int n;
 public Number(int n) { this.n = n; }
 int eval() { return n; }
}

class Sum extends SimpleExpr {
 SimpleExpr left, right;
 public Sum(SimpleExpr left, SimpleExpr right) {
 this.left = left;
 this.right = right;
 }
 int eval() { return left.eval() + right.eval(); }
}

(a) Product Class

Extend this class hierarchy by writing a Times class to represent product expressions of the form

\[e ::= \ldots | e \ast e \]
Method Calls
Suppose we construct a compound expression by

```
SimpleExpr a = new Number(3);
SimpleExpr b = new Number(5);
SimpleExpr c = new Number(7);
SimpleExpr d = new Sum(a,b);
SimpleExpr e = new Times(d,c);
```

and send the message `eval` to `e`. Explain the sequence of calls that are used to compute the value of this expression: `e.eval()`. What value is returned?

Comparison to “Type Case” constructs
Let’s compare this programming technique to the expression representation used in ML, in which we declared a datatype and defined functions on that datatype by pattern matching. The following `eval` function is one form of a “type case” operation, in which the program inspects the actual tag (or type) of a value being manipulated and executes different code for the different cases:

```
datatype MLEexpr =
    Number of int |
    Sum of MLEexpr * MLEexpr;

fun eval (Number(x)) = x |
    eval (Sum(e1,e2)) = eval(e1) + eval(e2);
```

This idiom also comes up in class hierarchies or collections of structures where the programmer has included a Tag field in each definition that encodes the actual type of an object.

i. Discuss, from the point of view of someone maintaining and modifying code, the differences between adding the Times class to the object-oriented version and adding a Times constructor to the MLEexpr datatype. In particular, what do you need to add/change in each of the programs. Generalize your observation to programs containing several operations over the arithmetic expressions, and not just eval.

ii. Discuss the differences between adding a new operation, such as `toString`, to each way of representing expressions. Assume you have already added the product representation so that there is more than one class with a nontrivial `eval` method.

Pair Programming

P1. (15 points)

Tail Recursion

(a) The dot product of two vectors \([a_1, \ldots, a_n]\) and \([b_1, \ldots, b_n]\) is the sum \(a_1b_1 + a_2b_2 + \cdots + a_nb_n\).

For example,

\[
[1, 2, 3] \cdot [-1, 5, 3] = 1 \cdot -1 + 2 \cdot 5 + 3 \cdot 3 = 18
\]

Implement the function

```
dotprod: int list -> int list -> int
```

to compute the dot product of two vectors represented as lists. You should write this using tail-recursion, so your `dotprod` function will probably just be a wrapper function that calls a second function that does all the work. If passed lists of different length, your function should raise a DotProd exception. You will need to declare this type of exception, but you need not catch it.
(b) The numbers in the Fibonacci sequence are defined as:

\[
\begin{align*}
F(0) &= 0 \\
F(1) &= 1 \\
F(n) &= F(n-1) + F(n-2)
\end{align*}
\]

Thus, the sequence is 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, etc.

The following defines a function that returns the n-th Fibonacci number.

```ml
fun slow_fib(0) = 0
| slow_fib(1) = 1
| slow_fib(n) = slow_fib(n-1) + slow_fib(n-2);
```

Unfortunately, computing slow_fib(n) requires \(O(2^n)\) time.

Define a tail recursive function fast_fib that can compute \(F(n)\) in \(O(n)\) time by using tail recursion. (As above, fast_fib will most likely be a wrapper that calls a tail-recursive function.) The tail-recursive function should have only one recursive call in its definition.

```
- fast_fib 0
  val it = 0 : int
- fast_fib 1
  val it = 1 : int
- fast_fib 5
  val it = 5 : int
- fast_fib 10
  val it = 55 : int
```

(Hint: When converting sumSquares to tail-recursive form, we introduced one auxiliary parameter to accumulate the result of the single recursive call in that function. How many auxiliary parameters do you think we will need for fibtail?)

P2. (10 points) Tail Recursion and Iteration

The following recursive function multiplies two integers by repeated addition.

```ml
fun mult(a,b) = 
  if a=0 then 0 
  else if a = 1 then b 
  else b + mult(a-1,b);
```

This is not tail recursive as written, but it can be transformed into a tail-recursive function by adding a third parameter, representing the result of the computation done so far.

```ml
fun mult(a,b) = 
  let fun mult1(a,b,result) = 
    if a=0 then 0 
    else if a = 1 then b + result 
    else mult1(a-1,b,result+b) 
  in 
    mult1(a,b,0) 
  end;
```
Translate this tail-recursive definition into an equivalent ML function, using a while loop instead of recursion. An ML while has the usual form, described in section 5.4.5.

The multiply function you will be translating has several termination conditions, all of which should be present in your solution, and your solution should perform the same sequence of arithmetic operations as the original.

P3. (20 points) ...Visitor Design Pattern...

Your repository includes starter code in a file called ExprVisitor.java. Download that code and compile it with javac. Include answers to the questions below as comments at the top of that file.

The extension and maintenance of code can be either simplified or complicated by design decisions made early on. This question explores some design possibilities for an object hierarchy (like the one in Q3) that represents arithmetic expressions.

The designers of the hierarchy have already decided to structure it as shown below, with a base class Expr and derived classes Number, Sum, Times, and so on. They are now contemplating how to implement various operations on Expressions, such as printing the expression in parenthesized form or evaluating the expression.

The obvious way to implement operations is by adding a method to each class for each operation. This version is not in the starter code, but the expression hierarchy would look like the following in this scenario:

```java
abstract class Expr {
    public abstract String toString();
    public abstract int eval();
}

class Number extends Expr {
    int n;

    public Number(int n) { this.n = n; }
    public String toString() { ... }
    public int eval() { ... }
}

class Sum extends Expr {
    Expr left, right;

    public Sum(Expr left, Expr right) {
        this.left = left;
        this.right = right;
    }
    public String toString() { ... }
    public int eval() { ... }
}
```

Suppose there are \(n \) subclasses of Expr altogether, each similar to Number and Sum shown here. How many classes would have to be added or changed to add each of the following things?

(a) A new class to represent division expressions.

(b) A new operation to graphically draw the expression parse tree.

Another way to implement expression classes and operations uses a technique called the “visitor design pattern.” In this pattern, each operation is represented by a Visitor class. Each Visitor class has a visit\(\text{Class} \) method for each expression class \(\text{Class} \) in the hierarchy. Each expression class \(\text{Class} \) is set up to call the visit\(\text{Class} \) method to perform the operation for that particular class. In particular, each class in the expression hierarchy has an accept method that
accepts a Visitor as an argument and allows the Visitor to visit the class and perform its operation. The expression class does not need to know what operation the visitor is performing. You might use a Visitor class ToString to construct a string representation of an expression tree as follows:

```
Expr expTree = ...some code that builds the expression tree...;
ToString printer = new ToString();
String stringRep = expTree.accept(printer);
System.out.println(stringRep);
```

The first line defines an expression, the second defines an instance of your ToString class, and the third passes your visitor object to the accept method of the expression object.

The expression class hierarchy using the Visitor Design Pattern has the following form, with an accept method in each class and possibly other methods. Since different kinds of visitors return different types of values, the accept method is parameterized by the type that the visitor computes for each expression tree:

```java
abstract class Expr {
    abstract <T> T accept(Visitor<T> v);
}

class Number extends Expr {
    int n;
    public Number(int n) { this.n = n; } 
    public <T> T accept(Visitor<T> v) {
        return v.visitNumber(this.n);
    }
}

class Sum extends Expr {
    Expr left, right;
    public Sum(Expr left, Expr right) {
        this.left = left;
        this.right = right;
    }
    public <T> T accept(Visitor<T> v) {
        T leftVal = left.accept(v);
        T rightVal = right.accept(v);
        return v.visitSum(leftVal, rightVal);
    }
}
```

The associated Visitor abstract class, naming the methods that must be included in each visitor, and the ToString visitor, have this form:

```java
abstract class Visitor<T> {
    abstract T visitNumber(int n);
    abstract T visitSum(T left, T right);
}

class ToString extends Visitor<String> {
    public String visitNumber(int n) {
        return "" + n;
    }
    public String visitSum(String left, String right) {
        return "(" + left + " + " + right + ")";
    }
}
```
Here is an example of using the visitor to evaluate and print an expression.

```java
class ExprVisitor {
    public static void main(String s[]) {
        Expr e = new Sum(new Number(3), new Number(2));
        ToString printer = new ToString();
        String stringRep = e.accept(printer);
        System.out.print(stringRep);
    }
}
```

(c) Starting with the call to `e.accept(printer)`, what is the sequence of method calls that will occur while building the string for the expression tree `e`?

(d) Add the following classes to the source file. You will need to change some of the existing classes to accommodate them.

 i. An `Eval` visitor class that computes the value of an expression tree. The visit methods should return an `Integer`. Recall that Java 1.5 has auto-boxing, so it can convert `int` values to `Integer` objects and vice-versa, as needed.
 ii. `Subtract` and `Times` classes to represent subtraction and product expressions.
 iii. A `Compile` visitor class that returns a sequence of stack-based instructions to evaluate the expression. You may use the following stack instructions (Refer back to HW 3 if you need a refresher on how these instructions operate):

        ```
PUSH(n)
ADD
MULT
SUB
DIV
SWAP
```

 The visit methods can simply return a `String` containing the sequence of instructions. For example, compiling `3 * (1 - 2)` should return the string:

   ```
PUSH(3)  PUSH(1)  PUSH(2)  SUB  MULT
```

 The instruction sequence should just leave the result of computing the expression on the top of the stack. Note: the order of instructions you need to generate is exactly a post-order traversal of the expression tree.

Aside: Most modern compilers (including the Java compiler) are implemented using the Visitor Pattern. The compilation process is really just a sequence of visit operations over the abstract syntax tree. Common steps include visitors 1) to resolve the declaration to which each variable access refers; 2) to perform type checking; 3) to optimize the program; 4) to generate code as above; and so on.

Suppose there are `n` subclasses of `Expr`, and `m` subclasses of `Visitor`. How many classes would have to be added or changed to add each of the following things using the Visitor Design Pattern?

(e) A new class to represent division expressions.

(f) A new operation to graphically draw the expression parse tree.

The designers want your advice.

(g) Under what circumstances would you recommend using the standard design?

(h) Under what circumstances would you recommend using the visitor design pattern?
P4. (9 points) ... Five 5’s (Challenge Question)

Consider the well-formed arithmetic expressions using the numeral 5. These are expressions formed by taking the integer literal 5, the four arithmetic operators +, −, *, and /, parentheses. Examples are 5, 5 + 5, and (5 + 5) * (5 − 5 / 5). Such expressions correspond to binary trees in which the internal nodes are operators and every leaf is a 5. Write an ML program to answer each of the following questions:

(a) What is the smallest positive integer that cannot be computed by an expression involving exactly five 5’s?
(b) What is the largest prime number that can computed by an expression involving exactly five 5’s?
(c) Generate an expression that evaluates to that prime number.

You should start by defining a datatype to represent arithmetic expressions involving 5 and the arithmetic operations, as well as an eval function to evaluate them. This question involves only integer arithmetic, so be sure to use div for division. You should then write code to generate all expressions containing a fixed number of 5’s.

Answering the questions will then involve an exhaustive search (for all numbers that can be computed with a fixed number of 5’s), so good programming techniques are important. Avoid any unnecessarily time-consuming or memory-consuming operations. You may also have to do something special to avoid division by zero inside eval, perhaps with exception handlers.

(For those who have taken or are taking CS256: while there are many possible ways to solve this problem, efficient solutions may be found using dynamic programming...)

9