Last Time

- Introduction To Graphs
 - Definitions and Properties: Undirected Graphs
 - Small Proofs
 - Reachability
Today’s Outline

• Graphs in Structure
 • Graph Interface

• Using the Graph interface to implement graph algorithms:
 • BFS + DFS

• Lab 10 Preview: Graph Coloring to schedule exams
Graphs in Structure

- Implementation involves a number of design decisions, depending on intended uses
 - What kinds of graphs will be available?
 - Undirected, directed, mixed
 - What underlying data structures will be used?
 - What functionality will be provided?
 - What aspects will be public/protected/private
- We’ll focus on popular implementations for undirected and directed graphs (separately)
Graphs in structure

- We want to store information at vertices and at edges, but we favor vertices
 - Let V and E represent the types of information held by vertices and edges respectively
 - Interface $\text{Graph}<V,E>$ extends $\text{Structure}<V>$
 - Vertices are the building blocks; edges depend on them
 - Type V holds a \textit{label} for a (hidden) vertex
 - Type E holds a \textit{label} for an (available) edge
 - Label: Application-specific data for a vertex/edge
Graphs in structure

• So, the methods described in the Structure interface are about vertices (but also impact edges: e.g., `clear()`)

• We’ll want to add a number of similar methods to provide information about edges, and the graph itself
 • Ultimately the Structure interface is a subset of the total functionality in the graph classes
Recall: Desired Functionality

• What are the basic operations we need in order to describe algorithms on graphs?
 • Given vertices u and v: are they adjacent?
 • Given vertex v and edge e, are they incident?
 • Given an edge e, get its incident vertices (ends)
 • How many vertices are adjacent to v? \(\text{deg}(v) \)
 • The vertices adjacent to v are called its neighbors
 • Get a list of the neighbors of v (or the edges incident with v)
Graph Interface Methods

- void add(V vLabel), V remove(V vLabel)
 - Add/remove vertex to graph
- void addEdge(V vLabel1, V vLabel2, E edgeLabel),
 E removeEdge(V vLabel1, V vLabel2)
 - Add/remove edge between vLabel1 and vLabel2
- boolean containsEdge(V vLabel1, V vLabel2)
 - Returns true iff there is an edge between vLabel1 and vLabel2
- Edge<V,E> getEdge(V vLabel1, V vLabel2)
 - Returns edge between vLabel1 and vLabel2
- void clear()
 - Remove all nodes (and edges) from graph
Graph Interface Methods

- `boolean visit(V vLabel)`
 - Mark vertex as “visited” and return previous value of visited flag
- `boolean visitEdge(Edge<V,E> e)`
 - Mark edge as “visited”
- `boolean isVisited(V vLabel), boolean isVisitedEdge(Edge<V,E> e)`
 - Returns true iff vertex/edge has been visited
- `Iterator<V> neighbors(V vLabel)`
 - Get iterator for all neighbors of vLabel
 - For directed graphs, out-edges only
- `Iterator<V> iterator()`
 - Get vertex iterator
- `void reset()`
 - Remove visited flags for all nodes/edges
Representing Graphs

• Two standard approaches
 • Option 1: Array-based (directed and undirected)
 • Option 2: List-based (directed and undirected)

• We’ll look at both
 • Array-based graphs store the edge information in a 2-dimensional array indexed by the vertices
 • List-based graphs store the edge information in a (1-dimensional) array of lists
 • The array is indexed by the vertices
 • Each array element is a list of edges incident with that vertex
Example Graph Representations: Lists and Matrices

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

```
A ➔ B ➔ C ➔ G ➔ H
B ➔ A ➔ C ➔ D ➔ G ➔ H
C ➔ A ➔ B ➔ D ➔ F
D ➔ B ➔ C ➔ E ➔ F
E ➔ D ➔ H
F ➔ C ➔ D ➔ G
G ➔ A ➔ B ➔ F
H ➔ A ➔ B ➔ E
```
Graph Classes in structure5

- **Interface**
- **Abstract Class**
- **Class**

Structure

- **Graph**
 - GraphMatrix
 - GraphMatrixDirected
 - GraphMatrixUndirected
 - GraphList
 - GraphListDirected
 - GraphListUndirected

Vertex

- GraphMatrixVertex
- GraphListVertex

Edge
Edge Class

• Graph edges are defined in their own public class (vertices are hidden: referenced only by their label)
 • Edge<V,E>(V vLabel1, V vLabel2, E label, boolean directed)
 • Construct a (possibly directed) edge between two labeled vertices (vLabel1 → vLabel2)
 • vLabel1 : here; vLabel2 : there

• Useful Edge methods (getters and setters):
 label(), here(), there()
 setLabel(), isVisited(), isDirected()
Reachability: Breadth-First Search

BFS(G, v) // Do a breadth-first search of G starting at v
// pre: all vertices are marked as unvisited
// post: return number of visited vertices

count ← 0;
Create empty queue Q;
add v to Q, mark v as visited, add ‘v’ to count

While Q isn’t empty
 current ← Q.dequeue();
 for each unvisited neighbor u of current :
 add u to Q, mark u as visited, add ‘u’ to count

return count;
Breadth-First Search

```java
int BFS(Graph<V,E> g, V src) {
    int count = 0; Queue<V> todo = new QueueList<V>();
    todo.enqueue(src);
    g.visit(src); count++;
    while (!todo.isEmpty()) {
        V vertex = todo.dequeue();
        Iterator<V> neighbors = g.neighbors(vertex);
        while (neighbors.hasNext()) {
            V next = neighbors.next();
            if (!g.isVisited(next)) {
                todo.enqueue(next);
                g.visit(next); count++;
            }
        }
    }
    return count;
}
```
Breadth-First Search of Edges

```java
int BFS(Graph<V,E> g, V src) {
    int count = 0; Queue<V> todo = new QueueList<V>();
    todo.enqueue(src);
    g.visit(src); count++;
    while (!todo.isEmpty()) {
        V vertex = todo.dequeue();
        Iterator<V> neighbors = g.neighbors(vertex);
        while (neighbors.hasNext()) {
            V next = neighbors.next();
            if (!g.isVisitedEdge(vertex, next))
                g.visitEdge(vertex, next);
            if (!g.isVisited(next)) {
                todo.enqueue(next);
                g.visit(next); count++;
            }
        }
    }
    return count;
}
```
Recursive Depth-First Search

// Before first call to DFS, set all vertices to unvisited
// Then call DFS(G,v)
DFS(G, v)

Mark v as visited; count=1;
for each unvisited neighbor u of v:
 count += DFS(G,u);
return count;

How does this translate to code?
Recursive Depth-First Search

```java
int depthFirstSearch(Graph<V,E> g, V src) {
    g.visit(src);
    int count = 1;
    Iterator<V> neighbors = g.neighbors(src);
    while (neighbors.hasNext()) {
        V next = neighbors.next();
        if (!g.isVisited(next))
            count += depthFirstSearch(g, next);
    }
    return count;
}
```
Lab 10 Overview:
Graph Algorithms using structure5
Greedy Algorithms

• A \textit{greedy algorithm} attempts to find a globally optimum solution to a problem by making locally optimum (greedy) choices

• Example: Walking in Manhattan

• Example: Graph Coloring
 • A \textit{(proper) coloring} of a graph \(G = (V, E) \) is an assignment of a value (color) to each vertex so that adjacent vertices get different values (colors)
 • Typically one strives to minimize the number of colors used
Graph Coloring Example
Greedy Coloring : Math

Here’s a greedy coloring algorithm

Build a collection $C = \{C_1, \ldots, C_k\}$ of sets of vertices

$i = 0; \ C_i = \{\} \ // \text{empty set}$

while G is has more vertices

for each vertex u in G

if u is not adjacent to any vertex of C_i

remove u from G and add u to C_i

add C_i to C

$i++;$

Return C as the coloring
Greedy Coloring : CS

Here’s a greedy coloring algorithm
Create a structure C to hold a collection of lists
while G is not empty
 pick a vertex v in G; create an empty list L; add v to L
 for each vertex $u \neq v$ in G
 if u is not adjacent to any vertex of L
 add u to L
 remove all vertices of L from G
 add L to C
Return C as the coloring
Greedy Coloring
Greedy Coloring

Some observations

• Each list (color class) L is a set of vertices, no two of which are adjacent (an independent set)

• Each color class is maximal: cannot be made any larger
 • The hope is that this results in fewer colors being needed
 • But the solution is not always optimum!
 • This is a very hard problem

• The coloring problem is the same as finding a partition of the vertex set into independent sets
 • Partition means union of disjoint sets
Lab 10 : Exam Scheduling

Find a schedule (set of time slots) for exams so that

• No student has two exams in the same slot
• Every course is in a slot
• The number of slots is as small as possible

This is just the graph coloring problem in disguise!

• Each course is a vertex
• Two vertices are adjacent if the courses share students
• A slot must be an independent set of vertices (that is, a color class)
Lab 10 Notes: Using Graphs

• Create a new graph in structure5
 • GraphListDirected, GraphListUndirected,
 • GraphMatrixDirected, GraphMatrixUndirected

• Graph<V,E> conflictGraph = new GraphListUndirected<V,E>();
Lab 10: Useful Graph Methods

- **void add(V label)**
 - add vertex to graph
- **void addEdge(V vtx1, V vtx2, E label)**
 - add edge between vtx1 and vtx2
- **Iterator<V> neighbors(V vtx1)**
 - Get iterator for all neighbors to vtx1
- **boolean isEmpty()**
 - Returns true iff graph is empty
- **Iterator<V> iterator()**
 - Get vertex iterator
- **V remove(V label)**
 - Remove a vertex from the graph
- **E removeEdge(V vLabel1, V vLabel2)**
 - Remove an edge from graph