Administrative Details

- Lab 9 Today: Gardner’s Hex-a-Pawn
 - Another partner lab!
 - Challenging to design & debug
 - Make sure you fill out the form
Last Time

- BST Implementation details:
 - `removeTop`: detaches the root of a tree and returns a valid BST by re-assembling the children.
 - `remove`: uses `removeTop` to delete a node and reattach the returned subtree to the parent of the removed node.
 - `add`: because of duplicate nodes, we should recursively call `add`.
public void add(E value) {
 // add value to binary search tree
 // if there's no root, create value at root
 if (root.isEmpty()) {
 root = new BinaryTree<E>(value, EMPTY, EMPTY);
 } else {
 add(root, value);
 }
 count++;
}
public void add(BinaryTree<E> root, E value) {
 BinaryTree<E> insertLocation = locate(root, value);
 E nodeValue = insertLocation.value();
 // The location returned is the successor or predecessor
 // of the to-be-inserted value
 if (ordering.compare(value, nodeValue) > 0) {
 // value > nodeValue
 insertLocation.setRight(new BinaryTree<E>(value, EMPTY, EMPTY));
 } else {
 // value <= nodeValue
 if (insertLocation.left().isEmpty()) {
 // if value is in tree, we insert just before
 insertLocation.setLeft(new BinaryTree<E>(value, EMPTY, EMPTY));
 } else {
 // to properly handle duplicates, add to tree rooted at pred
 add(predecessor(insertLocation), value);
 }
 }
}
Demo

- BST add demo
But What About Height?

• Operations’ performance all depend on h
• Can we design a binary search tree that is always “shallow” (minimizes h)?
• Yes! In many ways.
• AVL trees are one example
 • Named after its two inventors, G.M. Adelson-Velsky and E.M. Landis, who published a paper about AVL trees in 1962 called "An algorithm for the organization of information"
• The *balance factor* of a node is the height of its right subtree minus the height of its left subtree.

• A node with balance factor 1, 0, or -1 is considered *balanced*.

• A node with any other balance factor is considered *unbalanced* and requires rebalancing the tree.
Unbalanced trees can be rotated to achieve balance.

Single Rotation (Left)
Single Rotation (Left)

Unbalanced trees can be rotated to achieve balance.

\[
\begin{align*}
\text{A} & \quad \text{B} & \quad \text{C} \\
\text{B} & \quad \text{C} \\
\text{A} &
\end{align*}
\]

rotateRight

\[
\begin{align*}
\text{A} & \quad \text{B} & \quad \text{C} \\
\text{A} & \quad \text{B} \\
\text{A} &
\end{align*}
\]
Single Right Rotation

newRoot → \text{setRight} \quad \text{setLeft} → \text{newRoot}

\text{newRoot} → \text{setRight} \quad \text{setLeft} → \text{newRoot}

T1
height k+1

T2
height k

T3
height k-2

T4
height k-1

G
height 0

N
height 0

P
height 1

T1
height k+1

T2
height k

T3
height k-2

T4
height k-1
BinaryTree rotateRight()

// pre: this has a left subtree
// post: rotates local portion of tree so left child is root
protected void rotateRight() {
 // establish pointers/relationships before mucking with the tree
 BinaryTree<E> parent = parent;
 BinaryTree<E> newRoot = left();
 boolean wasChild = parent != null;
 boolean wasLeftChild = isLeftChild();

 // rotate!
 setLeft(newRoot.right()); // hook in new root
 newRoot.setRight(this); // make old root right child of new root
 if (wasChild) {
 // update parent pointers to rotated subtree
 if (wasLeftChild) parent.setLeft(newRoot);
 else parent.setRight(newRoot);
 }
}
More Complicated Rotations

• Sometimes a single root rotation won’t balance the tree
 • Rotate, then rotate again!
 • We will look at Right-Left and Left-Right
Double Rotation (Right-Left)
Double Rotation (Left-Right)
Double Rotation (Left-Right)
AVL Tree Facts

• A tree that is AVL except at root, where root balance factor equals ±2 can be rebalanced with at most 2 rotations

• add(v) requires at most $O(\log n)$ balance factor changes and one (single or double) rotation to restore AVL structure

• remove(v) requires at most $O(\log n)$ balance factor changes and $O(\log n)$ (single or double) rotations to restore AVL structure

• An AVL tree on n nodes has height $O(\log n)$
AVL Trees: One of Many

- There are many strategies for tree balancing to preserve $O(\log n)$ height, including:
 - AVL Trees: \textit{guaranteed} $O(\log n)$ height
 - Red-black trees: \textit{guaranteed} $O(\log n)$ height
 - B-trees (not binary): \textit{guaranteed} $O(\log n)$ height
 - 2-3 trees, 2-3-4 trees, red-black 2-3-4 trees, ...
 - Splay trees: \textit{Amortized} $O(\log n)$ time operations
 - Randomized trees: $O(\log n)$ \textit{expected} height
Game Trees

Game Trees

- Nodes are positions in a game (game state)
- Edges are moves (transition from one game state to another)
 - All edges to a given level represent moves by the same player
- Leaf nodes represent ending board states (winner or tie)
 - # of leaf nodes = # of ways a game can be played
Game Trees

- In AI, often search the game tree and use an algorithm like **minimax** to choose the next “best move”
- Chess, checkers, tic-tac-toe, etc.
- What about real-time games?
Game Trees

• The **complete game tree**: the root is the initial game state and the tree contains all possible moves from each position
 • You will build complete Hexapawn game trees
 • But your computer player will “prune” the losing branches
Backwards Induction (from Wikipedia)

- Pick 3 colors: player 1 win (P1W), player 2 win (P2W), and tie (T).

- Color leaves (height 0) of the game tree so that:
 - all wins for player 1 are colored P1W,
 - all wins for player 2 are colored P2W,
 - all ties are T.

- Look at height 1 nodes. For each node:
 - If any child is colored for the current player’s opponent, color this for the current player’s opponent
 - If all children are colored for the current player, color this node for the current player
 - Otherwise, color this node for a tie

- Repeat for each level, moving upwards, until all nodes are colored.

- The color of the root node is the outcome of optimal play.
Backwards Induction Example

Begin

Player 1

Player 2

Player 1

Player 2

End