Administrative Details

- Lab 7 posted
 - Two towers
 - Use iterators to solve a challenging problem
 - Bitwise operations help
Last Time

• Trees!
 • General Idea and Uses
 • Terminology
 • Some examples
 • Expression trees
Today

- The structure5 BinaryTree class
 - implementation details
- Some quick proofs and theory
- Traversing trees
Branching Out: Trees

- A tree is a data structure where elements can have multiple successors (called children).
- But still only one predecessor (called parent).
Tree Features

- Trees express hierarchical relationships
 - Directed: root to leaf
- **Root** at the top
- **Leaf** at the bottom
- **Interior nodes** in middle
- Parent, children, ancestors, descendants, siblings
- **Degree (of node)**: number of children of node
- **Degree (of tree)**: maximum degree (across all nodes)
- **Depth** of node: number of edges from root to node
- **Height**: maximum depth (across all nodes)
Introducing **Binary Trees**

- **Degree** of each node \(\leq 2 \)
- Recursively defined. A tree can either be:
 - Empty
 - Root with left and right subtrees
- **Binary Tree**: No “inner” node class like SLL; single `BinaryTree` class does it all
- (Not part of the structure inheritance hierarchy)
Implementing structure5 BinaryTree

- BinaryTree\(<E>\) class
 - Instance variables
 - BinaryTree: parent, left, right
 - E: value
 - left and right are never null
 - If no child, they point to an “empty” tree
 - Empty tree \(T\) has value null, parent null, left = right = \(T\)
 - Only empty tree nodes have null value
Implementing BinaryTree

- BinaryTree class
 - Instance variables
 - BT parent, BT left, BT right, E value
A small tree

EMPTY != null!
Implementing BinaryTree

- Many (!) methods: See BinaryTree javadoc page
- All “left” methods have equivalent “right” methods
 - public BinaryTree()
 - // generates an empty node (EMPTY)
 - // parent and value are null, left=right=this
 - public BinaryTree(E value)
 - // generates a tree with a non-null value and two empty (EMPTY) subtrees
 - public BinaryTree(E value, BinaryTree<E> left, BinaryTree<E> right)
 - // returns a tree with a non-null value and two subtrees
 - public void setLeft(BinaryTree<E> newLeft)
 - // sets left subtree to newLeft
 - // re-parents newLeft by calling newLeft.setParent(this)
 - protected void setParent(BinaryTree<E> newParent)
 - // sets parent subtree to newParent
 - // called from setLeft and setRight to keep all “links” consistent
Implementing BinaryTree

- Methods:
 - public BinaryTree<E> left()
 - // returns left subtree
 - public BinaryTree<E> parent()
 - // post: returns reference to parent node, or null
 - public boolean isLeftChild()
 - // returns true if this is a left child of parent
 - public E value()
 - // returns value associated with this node
 - public void setValue(E value)
 - // sets the value associated with this node
 - public int size()
 - // returns number of (non-empty) nodes in tree
 - public int height()
 - // returns height of tree rooted at this node
 - But where’s “remove” or “add”?!?!
• Prove
 • The number of nodes at depth \(n \) is at most \(2^n \).
 • The number of nodes in tree of height \(n \) is at most \(2^{(n+1)} - 1 \).
 • A tree with \(n \) nodes has exactly \(n-1 \) edges
BT Questions/Proofs

Prove: Number of nodes at depth $d \geq 0$ is at most 2^d.

Idea: Induction on depth d of nodes of tree

Base case: $d = 0$: 1 node. $1 = 2^0 \checkmark$

Induction Hyp.: For some $d \geq 0$, there are at most 2^d nodes at depth d.

Induction Step: Consider depth $d+1$. It has at most 2 nodes for every node at depth d.

Therefore it has at most $2 \times 2^d = 2^{d+1}$ nodes \checkmark
Prove that any tree of $n \geq 1$ nodes has $n - 1$ edges.

Idea: Induction on number of nodes

Base case: $n = 1$. There are no edges.

Induction Hyp: Assume that, for some $n \geq 1$, every tree of n nodes has exactly $n - 1$ edges.

Induction Step: Let T have $n+1$ nodes. Show it has exactly n edges.

- Remove a leaf v (and its single edge) from T
- Now T has n nodes, so it has $n-1$ edges
- Now add v (and its single edge) back, giving $n+1$ nodes and n edges.
Representing Knowledge

- Trees can be used to represent knowledge
 - Example: InfiniteQuestions game
- We often call these trees decision trees
 - Leaf: object
 - Internal node: question to distinguish objects
- Move down decision tree until we reach a leaf node
- Check to see if the leaf is correct
 - If not, add another question, make new and old objects children
- Let’s play....
Building Decision Trees

- Gather/obtain data
- Analyze data
 - Make greedy choices: Find good questions that divide data into halves (or as close as possible)
- Construct tree with shortest height
- In general this is a *hard* problem!
- Example
Representing Arbitrary Trees

• What if nodes can have many children?
 • Example: Game trees

• Replace left/right node references with a list of children (Vector, SLL, etc)
 • Allows getting “i\text{th}” child

• Should provide method for getting degree of a node

• Degree 0 Empty list No children Leaf

• We will use this idea in the Lexicon Lab
Tree Traversals

- In linear structures, there are only a few basic ways to traverse the data structure
 - Start at one end and visit each element
 - Start at the other end and visit each element
- How do we traverse binary trees?
 - (At least) four reasonable mechanisms
In-order: “left, node, right”
 Aria, Jacob, Kelsie, Lucas, Nambi, Tongyu
Pre-order: “node, left, right”
 Lucas, Jacob, Aria, Kelsie, Nambi, Tongyu
Post-order: “left, right, node”
 Aria, Kelsie, Jacob, Tongyu, Nambi, Lucas,
Level-order: visit all nodes at depth i before depth i+1
 Lucas, Jacob, Nambi, Aria, Kelsie, Tongyu
Tree Traversals

• Pre-order
 • Each node is visited before any children. Visit node, then each node in left subtree, then each node in right subtree. (node, left, right)
 • \(+*237 \)

• In-order
 • Each node is visited after all nodes in left subtree are visited and before any nodes in right subtree. (left, node, right)
 • \(2*3+7 \)

(“pseudocode”)
Tree Traversals

• **Post-order**
 - Each node is visited after its children are visited. Visit all nodes in left subtree, then all nodes in right subtree, then node itself. (left, right, node)
 - 23*7+

• **Level-order** (not obviously recursive!)
 - All nodes of level i are visited before nodes of level $i+1$. (visit nodes left to right on each level)
 - $+\ast 723$

("pseudocode")
public void preOrder(BinaryTree t) {
 if(t.isEmpty()) return;
 touch(t); // some method
 preOrder(t.left());
 preOrder(t.right());
}

For in-order and post-order: just move touch(t)!

But what about level-order???
Level-Order Traversal

Green
 /
Blue Violet
 /
 Orange Yellow
 /
 Indigo Red
Level-Order Traversal

```
        Green
       /   \
Blue    Violet
        /     \
Orange  Yellow
        /     \
Indigo  Red

G
```
Level-Order Traversal

- Green
- Blue
- Orange
- Yellow
- Indigo
- Red
Level-Order Traversal

Green

Blue Violet

Orange Yellow

Indigo Red

G B
Level-Order Traversal

G B V
Level-Order Traversal

G B V O
Level-Order Traversal

```
Green
  /    \
Blue   Violet
        /    \
Orange   Yellow
        /        \
Indigo   Red

GBV OY
```
Level-Order Traversal

G B V O Y I
Level-Order Traversal

G B V O Y I R
Level-Order Traversal

- Green
 - Blue
 - Violet
 - Orange
 - Yellow
 - Indigo
 - Red
Level-Order Traversal

- Green
 - Blue
 - Violet
 - Orange
 - Yellow
 - Indigo
 - Red

- todo queue
 - Green
Level-Order Traversal

G

- Green
 - Blue
 - Violet
 - Orange
 - Yellow
 - Indigo
 - Red

- todo queue
 - Violet
 - Blue
Level-Order Traversal

Green
- Blue
 - Violet
 - Orange
 - Indigo
 - Yellow
 - Red

Violet

todo queue

G B
Level-Order Traversal

Green

Blue

Violet

Orange Yellow

Indigo Red

todo queue
Level-Order Traversal

G B V O
Level-Order Traversal

G B V O Y

todo queue
Level-Order Traversal

G B V O Y I

todo queue
Level-Order Traversal

G B V O Y I R
Level-Order Tree Traversal

public static <E> void levelOrder(BinaryTree<E> t) {
 if (t.isEmpty()) return;

 // The queue holds nodes for in-order processing
 Queue<BinaryTree<E>> q = new QueueList<BinaryTree<E>>();
 q.enqueue(t); // put root of tree in queue

 while(!q.isEmpty()) {
 BinaryTree<E> next = q.dequeue();
 touch(next);
 if(!next.left().isEmpty()) q.enqueue(next.left());
 if(!next.right().isEmpty()) q.enqueue(next.right());
 }
}