Last Time

- Iterators Recap
- Iterating over Iterators
Today

• Trees!
 • General Idea and Uses
 • Terminology
 • Some examples
 • Expression trees
 • Introduction to
 structure5 BinaryTree class

• BinaryTree class implementation details
• Proofs and theory
• Traversing trees
Introducing Trees

• Our structures have had a linear organization
 • Stacks, queues
 • Even ordered vectors, ordered lists, arrays, vectors, lists are visualized linearly

• By linear we essentially mean that each element has at most one successor and at most one predecessor…
Branching Out: Trees

• A tree is a data structure where elements can have multiple successors (called children)
• But still only one predecessor (called parent)
Tree Logic (Natalie Jereminjenko) at Mass MoCA
House of Normandy, Battle of Hastings, 1066
Tree Features

• Trees express hierarchical relationships
 • Directed: root to leaf
• Root at the top
• Leaf at the bottom
• Interior nodes in middle
• Parent, children, ancestors, descendants, siblings
• Degree (of node): number of children of node
• Degree (of tree): maximum degree (across all nodes)
• Depth of node: number of edges from root to node
• Height: maximum depth (across all nodes)
Other Trees

- Phylogenetic tree
- Directories of files
- Game trees
 - Build a tree
 - Search it for moves with high likelihood of winning
- Expression trees
Expression Trees

4 * 2 + 3

(4 * 2 + 3) + ((10 − 2)/ 4)
Introducing **Binary Trees**

- **Degree** of each node ≤ 2
- Recursively defined. A tree can either be:
 - Empty
 - Root with left and right subtrees
- SLL: Recursive nature was captured by nodes (Node\(<E>\)) on inside
- Binary Tree: No “inner” node class; single BinaryTree class does it all
- (Not part of the structure hierarchy)
Binary Trees for (Math) Expressions

• General strategy
 • Make a binary tree (BT) for each leaf node
 • Move from bottom to top, creating BTs
 • Eventually reach the root
 • Call “evaluate” on final BT

• Example
 • How do we make a binary expression tree for: \((4*2)+3\)
 • Leaves are numbers
 • Non-leaf nodes are operators
 – We will apply each operator to its children (ex: left + right)
Example: Expression Trees

\[4 \times 2 + 3 \]

BinaryTree<String> fourTimesTwo =
 new BinaryTree<String>("\times",
 new BinaryTree<String>("4"),
 new BinaryTree<String>("2"));

BinaryTree<String> fourTimesTwoPlusThree =
 new BinaryTree<String>("+",
 fourTimesTwo,
 new BinaryTree<String>("3"));

Build using constructor
new BinaryTree<E>(value, leftSubTree, rightSubTree)
Evaluating Expression Trees

- Starting at the root,
 - Evaluate left subtree
 - Evaluate right subtree
 - Perform operation (+, -, *, /) with left and right
int evaluate(BinaryTree<String> expr) {
 if (expr.height() == 0) {
 return Integer.parseInt(expr.value());
 } else {
 int left = evaluate(expr.left());
 int right = evaluate(expr.right());
 String op = expr.value();
 switch (op) {
 case "+" : return left + right;
 case "-" : return left - right;
 case "*" : return left * right;
 case "/" : return left / right;
 }
 Assert.fail("Bad op");
 return -1;
 }
}
More Tree Terminology

• Some of the terminology is non-standard
• We will try to be consistent in this class, but…
 • We want to be able to communicate to our friends outside of Williams CS too!
• I *hate* jargon, but having a language for our data structures gives us the ability to express ideas and describe algorithms
Full vs. Complete (non-standard!)

- **Full tree** – A full binary tree of height h has *leaves only* on level h, and each internal node has exactly 2 children.

- **Complete tree** – A *complete* binary tree of height h is *full* to height $h-1$ and has all leaves at level h in leftmost locations.

All full trees are complete, but not all complete trees are full!