Administrative Details

• Lab 1
 • I apologize for not having it returned yet
 • Feedback will show up on GitHub as a “Pull Request”
 • PRs give you the option to view comments line-by-line, and respond to comments
 • New workflow this semester, so it is taking time to get the kinks worked out. It should be faster turnaround than printouts once it is working.
Last Time

- Revisited Vector Growth
 - Additive: $O(n^2)$
 - Multiplicative: $O(n)$
- Recursion
 - Base case
 - Recursive “leap of faith”
- Lab 3
 - Subset Sum
 - Helper method!
 - Big-O?
Today

• Induction
 • An important proof strategy
 • Closely tied to recursion

• List: A general-purpose interface

• Implementing Lists with linked structures
 • Singly Linked Lists
 • Circularly Linked Lists
 • Doubly Linked Lists
Mathematical Induction

- The mathematical cousin of recursion is induction
- Induction is a proof technique
- Reflects the structure of the natural numbers
- Use to simultaneously prove an infinite number of theorems!
Mathematical Induction

• Example: Prove that for every $n \geq 0$

\[P_n : \sum_{i=0}^{n} i = 0 + 1 + \ldots + n = \frac{n(n+1)}{2} \]

• Proof by induction mirrors recursion:

 • Base case:
 • P_n is true for $n = 0$

 • Inductive hypothesis:
 • If P_n is true for some $n \geq 0$, then P_{n+1} is true.
 – (Using a smaller version of the problem, we solve a larger version)
Mathematical Induction

\[P_n : \sum_{i=0}^{n} i = 0 + 1 + ... + n = \frac{n(n+1)}{2} \]

- Prove the base case: \(P_n \) is true for \(n = 0 \)
 - Just check it! Substitute 0 into the equation.
 \[0 = 0(1)/2 \]
- Assume the inductive hypothesis: \(P_n \) is true for some \(n \geq 0 \)
- Then use assumption to show that \(P_{n+1} \) is true.
 - First equality holds by assumed truth of \(P_n \)!
What about Recursion?

• What does induction have to do with recursion?
 • Same form!
 • Base case
 • Inductive case that uses simpler form of problem

• We can prove things about recursive functions using induction.

• Example: factorial
 • Prove that fact(n) requires n multiplications

```java
public static int fact(n) {
    if (n==0) return 1;
    return n * fact(n-1);
}
```
fact(n) requires n multiplications

• Prove that fact(n) requires n multiplications
 • Base case: n = 0 returns 1
 • 0 multiplications
 • Inductive Hypothesis: Assume true for all k<n, so fact(k) requires k multiplications.
 • Prove, from simpler cases, that the n^{th} case holds
 • fact(n) performs 1 multiplication (n*fact($n-1$)).
 • We know fact($n-1$) requires $n-1$ multiplications (by our I.H.)
 • $1+n-1 = n$
 – therefore fact(n) requires n multiplications.
Mathematical Induction

• Prove: \[\sum_{i=0}^{n} 2^i = 2^0 + 2^1 + 2^2 + \ldots + 2^n = 2^{n+1} - 1 \]

(Practice at home)

• Prove: \[0^3 + 1^3 + \ldots + n^3 = (0 + 1 + \ldots + n)^2 \]

• Prove: \(\text{fib}(n) \) makes at least \(\text{fib}(n) \) calls to \(\text{fib}() \)
Counting fib() method calls

• Prove that \(\text{fib}(n) \) makes at least \(\text{fib}(n) \) calls to \(\text{fib}() \)

 • **Base cases:** \(n = 0 \): 1 call; \(n = 1 \): 1 call

 • **Inductive Hypothesis:** Assume that for some \(n \geq 2 \), \(\text{fib}(n-1) \) makes at least \(\text{fib}(n-1) \) calls to \(\text{fib}() \) and \(\text{fib}(n-2) \) makes at least \(\text{fib}(n-2) \) calls to \(\text{fib}() \).

 • **Claim:** Then \(\text{fib}(n) \) makes at least \(\text{fib}(n) \) calls to \(\text{fib}() \)

 • 1 initial call: \(\text{fib}(n) \)
 • By induction: At least \(\text{fib}(n-1) \) calls for \(\text{fib}(n-1) \)
 • And as least \(\text{fib}(n-2) \) calls for \(\text{fib}(n-2) \)
 • Total: \(1 + \text{fib}(n-1) + \text{fib}(n-2) > \text{fib}(n-1) + \text{fib}(n-2) = \text{fib}(n) \) calls

• **Note:** Need two base cases!
The List Interface

interface List {
 size()
 isEmpty()
 contains(e)
 get(i)
 set(i, e)
 add(i, e)
 remove(i)
 addFirst(e)
 getLast()
 .
 .
 .
}

• It’s an interface...therefore it provides no implementation
• Can be used to describe many different types of lists
• Vector implements List
• Other implementations are possible...
Pros and Cons of Vectors

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Good general purpose list</td>
<td>• Slow updates to front of list (why?)</td>
</tr>
<tr>
<td>• Dynamically Resizeable</td>
<td>• Hard to predict time for add (depends on internal array size)</td>
</tr>
<tr>
<td>• Fast access to elements</td>
<td>• Potentially wasted space</td>
</tr>
<tr>
<td>• \texttt{vec.get(387425)} finds item 387425 in the same number of operations regardless of \texttt{vec}'s size</td>
<td></td>
</tr>
</tbody>
</table>

What if we didn’t have to copy the array each time we grew \texttt{vec}?
List Implementations

• General concept for storing/organizing data
• Vector implements the List interface
• We’ll now explore other List implementations
 • SinglyLinkedList
 • CircularlyLinkedList
 • DoublyLinkedList
Linked List Basics

• There are two key aspects of Lists
 • Elements of the list
 • Store data, point to the “next” element
 • The list itself
 • Includes head (sometimes tail) member variable

• Visualizing lists
Linked List Basics

- List nodes are recursive data structures
- Each “node” has:
 - A data value
 - A `next` variable that identifies the next element in the list
 - Can also have “`previous`” that identifies the previous element (“doubly-linked” lists)
- What methods does the `Node` class need?
SinglyLinkedLists

• How would we implement `SinglyLinkedListNode`?
 • `SinglyLinkedListNode = SLLN` in my notes
 • `SLLN = Node` in the book (in Ch 9)

• How about `SinglyLinkedList`?
 • `SinglyLinkedList = SLL` in my notes

• What would the following look like?
 • `addFirst(E d)`
 • `getFirst()`?
 • `addLast(E d)`? (more interesting)
 • `getLast()`?