for (int i=0; i < arr.length; i++){
 for (int j=0; j < arr.length; j++){
 for (int k=0; k < arr.length; k++)
 System.out.println("digits: "
 +arr[i]+arr[j]+arr[k]);
 }
}

• What is the time complexity of the code above?
 A. O(n)
 B. O(n^2)
 C. O(n^3)
 D. O(n^4)
 E. Whatever
Asymptotic Analysis (Big-O Analysis)

- “How scalable is the algorithm?” as input size \(\uparrow \)
- Commonly split into the following **classes**:
 - \(O(1) \): “constant” \(\Rightarrow \) no loop through the input
 - \(O(\log n) \): “logarithmic” or “log n”
 - \(O(n) \): “linear” \(\Rightarrow \) \(1 \) loop
 - \(O(n \log n) \): “n log n”
 - \(O(n^c) \): “polynomial”
 - \(O(n^2) \): “quadratic”
 - \(O(n^3) \): “cubic”
 - \(O(c^n) \): “exponential”
Administrative Details

• Lab 3
 • This is a partner lab; you get to work in groups of 2.
 • Please complete PRE-LAB before lab
 • Submit to the google form, please!
Agenda

- Recursion
Factorial

Definition:

\[n! = n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 1 \]

Recursive formula:

\[n! = n \cdot (n-1)! \]

\[0! = 1 \]

Function implementation:

\[
\text{fact}(\text{int} \ n) \{
 \text{if} \ (n == 0) \}
 \quad \text{return} \ 1;
\}
\quad \text{base case}
\]

\[
\text{?}
 \quad \text{return} \ n \cdot \text{fact} \ (n-1);
\]

\[
\text{?}
 \quad \text{fact}(\ n) \ ?
 \quad \text{return} \ n \cdot \text{fact} \ (n-1);
\]

\[
\text{?} \quad \text{recursive case}
\]

\[
\text{fact}(0) \ {\}
 \quad \text{return} \ 1;
\]
Recursion

- In recursion, we always use the same basic approach/structure
 - base case \(n = 0 \)
 - recursive case \(n > 0 \)
Fibonacci Numbers

0, 1, 1, 2, 3, 5, 8, ...

\[F_0 = 1 \]
\[F_1 = 1 \]
\[F_n = F_{n-1} + F_{n-2} \]

for \(n > 1 \)
```java
/**
 * fib()
 */

// Pre: n >= 0
// Post: nth Fibonacci is returned
public static int fib(int n) {
    assert n >= 0;
    // base case
    if (n == 0)
        return 1;
    if (n == 1)
        return 1;
    // recursive
    return fib(n-1) + fib(n-2);
}
```
contains()

```java
// Version 1:

public static boolean contains(int[] nums, int x) {
    if (nums.length == 0)
        return false;

    if (nums[0] == x)
        return true;

    int[] remaining = new int[nums.length - 1];
    for (int i = 0; i < remaining.length; i++)
        remaining[i] = nums[i + 1];

    return contains(remaining, x);
}
```
public static boolean contains(int[] nums, int x) {
 return containsHelper(nums, x, 0);
}

private static boolean containsHelper(int[] nums, int x, int curIdx) {
 if (curIdx >= nums.length)
 return false;

 return nums[curIdx] == x || containsHelper(nums, x, curIdx + 1);
}
canMakeSum()

```java
Helper(int[] set, int targetSum, int index) {
    ...

    return Helper(set, targetSum - set[index], index + 1);
}

if Helper(set, targetSum, index) {
    // "include the current element in the subset"
    // "do not" in the subset
```
Recursion Tradeoffs

- **Advantages**
 - Code is usually cleaner
 - Some problems do not have obvious non-recursive solutions

- **Disadvantages**
 - Overhead of recursive calls
 - Can use lots of memory (need to store state for each recursive call until base case is reached)
assert

• Pre- and post-condition comments are useful as a programmer, but it not enforced.
• `assert` throws an error if the condition is not met!
• `assert` syntax
 • `assert boolean_expression;`
 • `assert boolean_expression: String expression;`