Administrative Details

• Lab 3 Today
 • Declare your partner (or independence) by 10am
 – One repository where both people have access
 – Beware of merge conflicts!
 • Questions about warm-up problems?
 – We’ll go over at start of lab, but does anyone feel like they have a good solution?
Last Time

- Measuring Growth
 - Big-O
 - We care about trends
 - Goal: determine how performance scales with input size.
 - Best, worst, and average cases
Today

• Applying $O()$ to Compute Complexity
 • Finish Vector growing examples

• Recursion

• Mathematical Induction
Vector Operations: Worst-Case

Let \(n \) = Vector size (*not* capacity!):

- **O(1) operations (cost is same regardless of size):**
 - `size()`, `capacity()`, `isEmpty()`, `get(i)`, `set(i)`, `firstElement()`, `lastElement()`

- **O(n) operations (cost grows proportionally to size):**
 - `indexOf()`, `contains()`, `remove(elt)`, `remove(i)`

- **What about add methods?**
 - If Vector doesn’t need to grow
 - `add(elt)` is \(O(1) \) but `add(elt, i)` is \(O(n) \)
 - Otherwise, depends on `ensureCapacity()` time
 - Time to copy array: \(O(n) \)
Vectors: Add Method Complexity

Suppose we grow the Vector’s array by a fixed amount \(d \). How long does it take to add \(n \) items to an empty Vector?

- The array will be copied each time its capacity needs to exceed a multiple of \(d \)
- At sizes 0, \(d \), 2\(d \), \(\ldots \), \(n/d \).
- Copying an array of size \(kd \) takes \(ckd \) steps for some constant \(c \), giving a total of

\[
\sum_{k=1}^{n/d} ckd = cd \sum_{k=1}^{n/d} k = cd \left(\frac{n}{d} \right) \left(\frac{n}{d} + 1 \right) / 2 = O(n^2)
\]
Vectors: Add Method Complexity

Suppose we grow the Vector’s array by doubling. How long does it take to add \(n \) items to an empty Vector?

- The array will be copied each time its capacity needs to exceed a power of 2
 - At sizes 0, 1, 2, 4, 8 ..., \(n/2 \)
- The total number of elements are copied when \(n \) elements are added is:
 - \(1 + 2 + 4 + \ldots + n/2 = n-1 = O(n) \)
- Very cool! (So cool that we’ll prove it later)
Common Complexities

For $n =$ measure of problem size:

- $O(1)$: constant time and space
- $O(\log n)$: divide and conquer algorithms, binary search
- $O(n)$: linear scan (e.g., list lookup)
- $O(n \log n)$: divide and conquer sorting algorithms
- $O(n^2)$: matrix addition, selection sort
- $O(n^3)$: matrix multiplication
- $O(n^k)$: cell phone switching algorithms
- $O(2^n)$: subset sum, graph 3-coloring, satisfiability, ...
- $O(n!)$: traveling salesman problem (in fact $O(n^2 2^n)$)
Recursion

• General problem solving strategy
 • Break problem into sub-problems of same type
 • Solve sub-problems
 • Combine sub-problem solutions into solution for original problem
 • Recursive leap of faith!
Recursion

• Many algorithms are recursive
 • Can be easier to understand (and prove correctness/state efficiency of) than iterative versions
 • They feel elegant

• Today we will review recursion and then talk about techniques for reasoning about recursive algorithms
Think Recursively

- In recursion, we always use the same basic approach.
- What’s our base case? [Sometimes “cases”]
 - n=0? list.isEmpty()?
- What’s the recursive relationship?
 - How can we use the solution to a smaller version of the problem to answer the question?
Factorial

- $n! = n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 1$
- How can we implement this?
 - We could use a for loop...

- But we could also write it recursively
 - $n! = n \cdot (n-1)!$
 - $0! = 1$
Factorial

1 * 1 = 1
2 * 1 = 2
3 * 2 = 6

fact(3) → fact(2) → fact(1) → fact(0)
public class Fact{

 // Pre: n >= 0
 public static int fact(int n) {
 // base case
 if (n==0) {
 return 1;
 }
 // recursive leap of faith
 else {
 return n*fact(n-1);
 }
 }

 public static void main(String args[]) {
 System.out.println(fact(Integer.valueOf(args[0]).intValue()));
 }
}
Fibonacci Numbers

- 1, 1, 2, 3, 5, 8, 13, ...

Definition
- \(F_0 = 1, F_1 = 1\)
- For \(n > 1\), \(F_n = F_{n-1} + F_{n-2}\)

- Inherently recursive!

- It appears almost everywhere
 - Growth: Populations, plant features
 - Architecture
 - Data Structures!
public class Fib {

 // pre: n is non-negative
 public static int fib(int n) {
 // base case
 if (n == 0 || n == 1) {
 return 1;
 }
 // recursive leap of faith
 else {
 return fib(n - 1) + fib(n - 2);
 }
 }

 public static void main(String args[]) {
 System.out.println(fib(Integer.valueOf(args[0]).intValue()));
 }
}
Recursion Tradeoffs

- **Advantages**
 - Often easier to construct recursive solution
 - Code is usually cleaner (so *elegant*!)
 - Some problems do not have obvious non-recursive solutions

- **Disadvantages**
 - Overhead of recursive calls
 - Can use lots of memory (need to store state for each recursive call until base case is reached)
 - E.g. recursive fibonacci method
Alternate contains() for Vector

// Helper method: returns true if elt has index in range from..to
public boolean contains(E elt, int from, int to) {
 if (from > to) // Base case: empty range
 return false;
 else
 return elt.equals(elementData[from]) || contains(elt, from+1, to);
}

public boolean contains(E elt) {
 return contains(elt, 0, size()-1);
}

• What’s the time complexity of contains?
 • O(to – from + 1) = O(n) (n is the portion of the array searched)
 • Why?
 • Bootstrapping argument! True for: to – from = 0, to – from = 1, ...
• Let’s formalize this bootstrapping idea....