Administrative Details

• Lab 3 Wednesday!
 • You *may* work with a partner
 • Fill out “Lab 3 Partners” Google form either way!
 • Come to lab with a plan! (no design doc needed)
 • Try to answer warmup questions before lab
 • Subset Sum is challenging but important
Last Time

- Where did I go?
- What did I miss?
- Tell me about Lab 2!
- Should we expect from here?
Today

- Measuring Growth
 - Big-O
- Introduction to Recursion
Measuring Computational Cost

Consider these two code fragments...

```java
for (int i=0; i < arr.length; i++)
    if (arr[i] == x) return "Found it!";

...and...

for (int i=0; i < arr.length; i++)
    for (int j=0; j < arr.length; j++)
        if (i != j && arr[i] == arr[j]) return "Match!";
```

(What do they do?)

How long does it take to execute each block?
Measuring Computational Cost

• How can we measure the amount of work needed by a computation?
 • Get out a stopwatch (aka wall-clock time)?
 • Problems?
 – Different machines have different clocks
 – Too much other stuff happening (network, OS, etc)
 – Not consistent. Need lots of tests to predict future behavior
Measuring Computational Cost

• A better way: Counting computations
 • Count all computational steps?
 • Count how many “expensive” operations were performed?
 • Count number of times “x” happens?
 • For a specific event or action “x”
 • i.e., How many times a certain variable changes

• Question: How accurate do we need to be?
 • 64 vs 65? 100 vs 105? Does it really matter??
An Example

// Pre: array length n > 0
public static int findPosOfMax(int[] arr) {
 int maxPos = 0 // A wild guess
 for(int i = 1; i < arr.length; i++)
 if (arr[maxPos] < arr[i]) maxPos = i;
 return maxPos;
}

• Can we count steps exactly?
 • “if” makes it hard

• Idea: **Overcount**: assume “if” block always runs
 • Overcounting gives *upper bound* on run time
 • Can also undercount for *lower bound*
Measuring Computational Cost

• Rather than keeping exact counts, we want to know the \textit{order of magnitude} of occurrences
 • 60 vs 600 vs 6000, \textit{not} 65 vs 68
 • n, \textit{not} $4(n-1) + 4$

• We want to make comparisons \textit{without} looking at details and \textit{without} running tests

• Avoid using specific numbers or values

• Look for overall trends
Measuring Computational Cost

• **How does work scale with problem size?**
 - E.g.: If I double the size of the problem instance, how much longer will it take to solve:
 - Find maximum: $n - 1 \rightarrow (2n) - 1$ (twice as long)
 - Bubble sort: $n(n-1)/2 \rightarrow 2n(2n - 1)/2$ (4 times as long)
 - Enumerate all subsets: $2^{n-1} \rightarrow 2^{(2n)-1}$ (2^n times as long!!!)
 - Etc.

• We will also measure amount of space used by an algorithm using the same ideas….
Consider the following functions, for $x \geq 1$

- $f(x) = 1$
- $g(x) = \log_2(x)$
 // Reminder: if $x=2^n$, $\log_2(x) = n$
- $h(x) = x$
- $m(x) = x \log_2(x)$
- $n(x) = x^2$
- $p(x) = x^3$
- $r(x) = 2^x$
Function Growth & Big-O

• **Rule of thumb:** ignore multiplicative constants

• **Examples:**
 • Treat \(n \) and \(n/2 \) as same order of magnitude
 • \(n^2/1000, 2n^2, \text{ and } 1000n^2 \) are “pretty much” just \(n^2 \)

• The key is to find the most *significant* or *dominant* term

• Ex: \(\lim_{x \to \infty} (3x^4 - 10x^3 - 1)/x^4 = 3 \) (Why?)
 • So \(3x^4 - 10x^3 - 1 \) grows “like” \(x^4 \)
Asymptotic Bounds (Big-O Analysis)

- A function $f(n)$ is $O(g(n))$ if and only if there exist positive constants c and n_0 such that
 \[|f(n)| \leq c \cdot g(n) \quad \text{for all } n \geq n_0 \]
- g is “at least as big as” f for large n
 - Up to a multiplicative constant $c!$
- Example:
 - $f(n) = n^2/2$ is $O(n^2)$
 - $f(n) = 1000n^3$ is $O(n^3)$
 - $f(n) = n/2$ is $O(n)$
Determining “Best” Upper Bounds

- We typically want the smallest upper bound when we estimate running time
- Example: Let $f(n) = 3n^2$
 - $f(n)$ is $O(n^2)$
 - $f(n)$ is $O(n^3)$
 - $f(n)$ is $O(2^n)$
 - $f(n)$ is NOT $O(n)$ (!!)
- “Best” upper bound is $O(n^2)$
- We care about c and n_0 in practice, but focus on size of g when designing algorithms and data structures
Input-dependent Running Times

- Algorithms may have different running times for different input values

- **Best case** (typically not useful)
 - Sort already sorted array
 - Find item in first place that we look

- **Worst case** (generally useful, sometimes misleading)
 - Don’t find item in list $O(n)$
 - Reverse order sort $O(n^2)$

- **Average case** (useful, but often hard to compute)
 - Linear search $O(n)$
 - QuickSort random array $O(n \log n)$ ✐ We’ll sort soon
For \(n \) = Vector size (not capacity!):

- **O(1):**
 - size(), capacity(), isEmpty(), get(i), set(i), firstElement(), lastElement()

- **O(n):**
 - indexOf(), contains(), remove(elt), remove(i)

- **What about add methods?**
 - If Vector doesn’t need to grow
 - add(elt) is \(O(1) \) but add(elt, i) is \(O(n) \)
 - Otherwise, depends on ensureCapacity() time
 - Time to copy array: \(O(n) \)
Vectors: Add Method Complexity

Suppose we grow the Vector’s array by a fixed amount d. How long does it take to add n items to an empty Vector?

- The array will be copied each time its capacity needs to exceed a multiple of d.
 - At sizes $0, d, 2d, ... \), n/d.
- Copying an array of size kd takes ckd steps for some constant c, giving a total of:

\[
\sum_{k=1}^{n/d} ckd = cd \sum_{k=1}^{n/d} k = cd \left(\frac{n}{d}\right)\left(\frac{n}{d} + 1\right)/2 = O(n^2)
\]
Vectors: Add Method Complexity

Suppose we grow the Vector’s array by doubling. How long does it take to add n items to an empty Vector?

- The array will be copied each time its capacity needs to exceed a power of 2
 - At sizes 0, 1, 2, 4, 8 ..., n/2
- The total number of elements are copied when n elements are added is:
 - \(1 + 2 + 4 + \ldots + n/2 = n-1 = O(n)\)

- Very cool!