CSCI 136
Data Structures & Advanced Programming

Fall 2017
Lecture 33
The 2070567s
Administrative Details

Reminders

• No lab this week

• Final exam
 • Thursday, December 14 at 9:30 in TBL 112
 • Study guide, sample exam will be posted online
 • TAs available this weekend (see course calendar)
 • “Bills review” Tuesday from 1:30-2:30 in Physics 205
Last Time

- Prim’s algorithm wrapup
- Hash tables
 - `Object.hashCode()` maps objects to bins
 - Linear probing to resolve collisions
Today’s Outline

• External Chaining to resolve collisions
• Fun hashing applications (not on exam)
 • Cuckoo hashing
 • Bloom Filters
 • Verification/integrity
 • Deduplication
One Last Note on Graphs

- In an undirected graph, each edge connects two vertices
 - Which contributes 1 to the degree of each of those vertices
 - Since each edge will be counted by two vertices, the sum of all of the degrees of all vertices is twice the number of edges

\[\sum \text{deg}(v) = 2 |E| \]
Hashtable Core Concept

- A hash function maps a **key** to an **index**
- The **index** specifies the **bin** where the **key-value** pair should be stored
- If two keys hash to the same bin, we have a **collision**
- **Linear probing** scans and places the collided element in the first empty bin, creating a **run**
 - When we remove, must add a placeholder
External Chaining

• Instead of runs, we store a list in each bin

```
data[ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ]
```

```
(K,V) (K,V) (K,V) (K,V) (K,V) (K,V) (K,V) (K,V)
```

• Everything that hashes to bin\textsubscript{i} goes into list\textsubscript{i}
 • get(), put(), and remove() only need to check one slot’s list
 • No placeholders!
Probing vs. Chaining

What is the performance of:

- `put(K, V)`
 - LP: $O(1 + \text{run length})$
 - EC: $O(1 + \text{chain length})$

- `get(K)`
 - LP: $O(1 + \text{run length})$
 - EC: $O(1 + \text{chain length})$

- `remove(K)`
 - LP: $O(1 + \text{run length})$
 - EC: $O(1 + \text{chain length})$

- **Runs/chains are important. How do we control cluster/chain length?**
Load Factor

- Need to keep track of how full the table is
 - Why?
 - What happens when array fills completely?
- Load factor is a measure of how full the hash table is
 - LF = (# elements) / (table size)
- When LF reaches some threshold, double size of array (typically threshold = 0.6)
 - Challenges?
Doubling Array

• Cannot just copy values
 • Why?
 • Hash values may change
 • Example: suppose (key.hashCode() == 11)
 • 11 % 7 = 4;
 • 11 % 13 = 11;

• Result: must recompute all hash codes, reinsert into new array
Good Hashing Functions

• Important point:
 • All of this hinges on using “good” hash functions that spread keys “evenly”

• Good hash functions:
 • Are fast to compute
 • Distribute keys uniformly

• We almost always have to test “goodness” empirically
Example Hash Functions

• What are some feasible hash functions for Strings?
 • First char ASCII value mapping
 • 0-255 only
 • Not uniform (some letters more popular than others)
 • Sum of ASCII characters
 • Not uniform - lots of small words
 • smile, limes, miles, slime are all the same
Example Hash Functions

- String hash functions commonly use weighted sums
 - Character values weighted by position in string
 - Long words get bigger codes
 - Distributes keys better than non-weighted sum
 - Let’s look at different weights…
\[n = \text{s.length()} \]

\[
\sum_{i=0}^{s.length()} s.charAt(i)
\]

Hash of all words in UNIX spelling dictionary (997 buckets)
\[\sum_{i=0}^{n} s\text{.charAt}(i) \times 2^i \]
\[\sum_{i=0}^{n} s\text{.charAt}(i) \times 256^{i} \]

This looks pretty good, but 256^i is big…
\[\sum_{i=0}^{n} s\text{.charAt}(i) \times 31^i \]

Java uses:

\[\sum_{i=0}^{n} s\text{.charAt}(i) \times 31^{(n-i-1)} \]
Hashtables: $O(1)$ operations?

- How long does it take to compute a String’s `hashCode`?
 - $O(s.length())$

- Given an object’s hash code, how long does it take to find that object?
 - $O(\text{run length})$ or $O(\text{chain length})$ PLUS cost of `.equals()` method

- Conclusion: for a good hash function (fast, uniformly distributed) and a low load factor (short runs/chains), we say hashtables are $O(1)$
Summary

<table>
<thead>
<tr>
<th></th>
<th>put</th>
<th>get</th>
<th>space</th>
</tr>
</thead>
<tbody>
<tr>
<td>unsorted vector</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>unsorted list</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>sorted vector</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>balanced BST</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>array indexed by key</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(\text{key range})$</td>
</tr>
</tbody>
</table>