CSCI 136
Data Structures &
Advanced Programming

Lecture 22
Fall 2018
Instructor: Bills
Last Time

- Lab 7: Two Towers
- Array Representations of (Binary) Trees
- Application: Huffman Encoding
Today

Improving Huffman’s Algorithm

• Priority Queues & Heaps
 • A “somewhat-ordered” data structure
 • Conceptual structure
 • Efficient implementations
Huffman Codes

- Input: Text (a very long String!)
- Algorithm
 - Transform text into symbol frequency count
 - Build optimal encoding tree

<table>
<thead>
<tr>
<th>A</th>
<th>C</th>
<th>E</th>
<th>G</th>
<th>I</th>
<th>N</th>
<th>P</th>
<th>R</th>
<th>T</th>
<th>U</th>
<th>_</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
An Encoding Tree

Left = 0; Right = 1
Huffman Encoding

- Input: symbols of alphabet with frequencies
- Huffman encode as follows
 - Create a single-node tree for each symbol: key is frequency; value is letter
 - while there is more than one tree
 - Find two trees T_1 and T_2 with lowest keys
 - Merge them into new tree T with dummy value and key = $T_1.key + T_2.key$
- Theorem: The tree computed by Huffman is an optimal encoding for given frequencies
Recall: Huffman Encoding Algorithm

- Keep a Vector of Binary Trees
- Sort them by decreasing frequency
 - Removing two smallest frequency trees is fast
- Insert merged tree into correct (sorted) location in Vector
- Running Time:
 - $O(n \log n)$ for initial sorting
 - $O(n^2)$ for rest: $O(n)$ for each re-insertion
- Can we do better...?
What Huffman Encoder Needs

- A structure S to hold items with priorities
- S should support operations
 - `add(E item);` // add an item
 - `E removeMin();` // remove min priority item
- S should be designed to make these two operations fast
- If, say, they both ran in $O(\log n)$ time, the Huffman while loop would take $O(n \log n)$ time instead of $O(n^2)$!
- We’ve seen this situation before….
Packet Sources May Be Ordered by Sender

- sysnet.cs.williams.edu priority = 1 (best)
- bull.cs.williams.edu 2
- yahoo.com 10
- spammer.com 100 (worst)
Priority Queues

• Priority queues are also used for:
 • Scheduling processes in an operating system
 • Priority is function of time lost + process priority
 • Order services on server
 • Backup is low priority, so don’t do when high priority tasks need to happen
 • Scheduling future events in a simulation
 • Medical waiting room
 • Huffman codes - order by tree root “frequency”
 • A variety of graph/network algorithms
 • To roughly rank choices that are generated out of order
Priority Queues

• Name is misleading: They are **not FIFO**
• Always dequeue object with **highest priority** (smallest rank) regardless of when it was enqueued
• Data can be received/inserted in any order, but it is always returned/removed according to priority
• Like ordered structures (i.e., OrderedVectors and OrderedLists), PQs require comparisons of values
An Apology

• On behalf of computer scientists everywhere, I’d like to apologize for the confusion that inevitably results from the fact that
 Higher Priority \leftrightarrow Lower Rank
• The PQ removes the lowest ranked value in an ordering: that is, the highest priority value!

We’re sorry!
PQ Interface

```java
public interface PriorityQueue<E extends Comparable<E>> {
    public E getFirst(); // peeks at minimum element
    public E remove();   // removes minimum element
    public void add(E value); // adds an element
    public boolean isEmpty();
    public int size();
    public void clear();
}
```
Notes on PQ Interface

• Unlike previous structures, we do not extend any other interfaces
 • Many reasons: For example, it’s not clear that there’s an obvious iteration order
• PriorityQueue uses Comparables: methods consume Comparable parameters and return Comparable values
 • Could be made to use Comparators instead…
Implementing PQs

• Queue?
 • Wouldn’t work so well because we can’t insert and remove in the “right” way (i.e., keeping things ordered)

• OrderedVector?
 • Keep ordered vector of objects
 • $O(n)$ to add/remove from vector
 • Details in book…
 • Can we do better than $O(n)$?

• Heap!
 • Partially ordered binary tree
Heap

• A heap is a special type of tree
 • Root holds smallest (highest priority) value
 • Subtrees are also heaps (recursive definition!)
• So values increase in priority (decrease in rank) from leaves to root (from descendant to ancestor)
• Invariant for nodes: For each child of each node
 • node.value() <= child.value() // if child exists
• Several valid heaps for same data set (no unique representation)
Inserting into a PQ

- Add new value as a leaf
- “Percolate” it up the tree
 - while (value < parent’s value) swap with parent
- This operation preserves the heap property since new value was the only one violating heap property
- Efficiency depends upon speed of
 - Finding a place to add new node
 - Finding parent
 - Depth of newly added node
Removing From a PQ

- Find a leaf, delete it, put its \textit{data} in the root
- “Push” \textit{data} down through the tree
 - while (\textit{data.value} > value of (at least) one child)
 - Swap \textit{data} with data of \textit{smallest} child
- This operation preserves the heap property
- Efficiency depends upon speed of
 - Finding a leaf
 - Finding locations of children
 - Height of tree
Implementing Heaps

- VectorHeap
 - Use conceptual array representation of BT (ArrayTree)
 - But use extensible Vector instead of array (makes adding elements easier)
- Note:
 - Root of tree is location 0 of Vector
 - Children of node in location i are in locations $2i+1$ (left) and $2i+2$ (right)
 - Parent of node i is in location $(i-1)/2$
Implementing Heaps

• **Features**

 • No gaps in array (array is *complete*) -- why?
 - We always add in next available array slot (left-most available spot in binary tree;)
 - We always remove using “final” leaf

 • **Heap Invariant becomes**
 - data[i] \leq data[2i+1]; data[i] \leq data[2i+2] (or kids might be null)

 • When elements are added and removed, do small amount of work to “re-heapify”
 - How small? Note: finding a node’s child or parent takes constant time, as does finding “final” leaf or next slot for adding
 - Since this heap corresponds to a full binary tree, the depth of the tree is $O(\log n)$, so percolate/pushDown takes $O(\log n)$ time!