COMPUTER SCIENCE
Preregistration
Info Session

• Learn about Computer Science courses offered Spring 2017.

• Talk to professors about their classes.

• Meet other Computer Science students.

• Most importantly... **EAT PIZZA!**

Monday, October 30
at 9:00 pm
Biology Lounge
TBL 211
Last Time:

- Ordered Structures
- Trees
 - Structure, Terminology, Examples
Today

- Trees
 - Implementation
 - Recursion/Induction on Trees
 - Applications
 - Traversals
Introducing Binary Trees

• Degree of each node at most 2
• Recursive nature of tree
 • Empty
 • Root with left and right subtrees
• SLL: Recursive nature was captured by hidden node (Node<E>) class
• Binary Tree: No “inner” node class; single BinaryTree class does it all
• Not part of Structure hierarchy!
Expression Trees

Build using constructor

```
new BinaryTree<E>(value, leftSubTree, rightSubTree)
```

BinaryTree<String> fourTimesTwo = new BinaryTree<String>(
 "*", new BinaryTree<String>("4"), new BinaryTree<String>("2"));

BinaryTree<String> fourTimesTwoPlusThree = new BinaryTree<String>(
 "+", fourTimesTwo, new BinaryTree<String>("3"));
Expression Trees

• **General strategy**
 • Make a binary tree (BT) for each leaf node
 • Move from bottom to top, creating BTs
 • Eventually reach the root
 • Call “evaluate” on final BT

• **Example**
 • How do we make a binary expression tree for
 $(((4+3)*(10-5))/2)$
 • Postfix notation: $4\ 3\ +\ 10\ 5\ -\ *\ 2\ /$
```java
int evaluate(BinaryTree<String> expr) {

    if (expr.height() == 0)
        return Integer.parseInt(expr.value());

    else {
        int left = evaluate(expr.left());
        int right = evaluate(expr.right());
        String op = expr.value();
        switch (op) {
            case "+": return left + right;
            case "-": return left - right;
            case "*": return left * right;
            case "/": return left / right;
            default: Assert.fail("Bad op");
        }
        return -1;
    }
}
```
Full vs. Complete (non-standard!)

- **Full** tree – A full binary tree of height \(h \) has *leaves only* on level \(h \), and each internal node has exactly 2 children.

- **Complete** tree – A *complete* binary tree of height \(h \) is *full* to height \(h-1 \) and has all leaves at level \(h \) in leftmost locations.

All full trees are complete, but not all complete trees are full!
Implementing BinaryTree

- BinaryTree\(<E>\) class
 - Instance variables
 - BinaryTree: parent, left, right
 - E: value
 - left and right are never null
 - If no child, they point to an “empty” tree
 - Empty tree T has value null, parent null, left = right = T
 - Only empty tree nodes have null value
Implementing BinaryTree

- BinaryTree class
 - Instance variables
 - BT parent, BT left, BT right, E value
A small tree

EMPTY != null!
Implementing BinaryTree

- Many (!) methods: See BinaryTree javadoc page
- All “left” methods have equivalent “right” methods
 - public BinaryTree()
 - // generates an empty node (EMPTY)
 - // parent and value are null, left=right=this
 - public BinaryTree(E value)
 - // generates a tree with a non-null value and two empty (EMPTY) subtrees
 - public BinaryTree(E value, BinaryTree<E> left, BinaryTree<E> right)
 - // returns a tree with a non-null value and two subtrees
 - public void setLeft(BinaryTree<E> newLeft)
 - // sets left subtree to newLeft
 - // re-parents newLeft by calling newLeft.setParent(this)
 - protected void setParent(BinaryTree<E> newParent)
 - // sets parent subtree to newParent
 - // called from setLeft and setRight to keep all “links” consistent
Implementing BinaryTree

- **Methods:**
 - `public BinaryTree<E> left()`
 - // returns left subtree
 - `public BinaryTree<E> parent()`
 - // post: returns reference to parent node, or null
 - `public boolean isLeftChild()`
 - // returns true if this is a left child of parent
 - `public E value()`
 - // returns value associated with this node
 - `public void setValue(E value)`
 - // sets the value associated with this node
 - `public int size()`
 - // returns number of (non-empty) nodes in tree
 - `public int height()`
 - // returns height of tree rooted at this node
 - But where’s “remove” or “add”?!?!
• Prove
 • The number of nodes at depth n is at most 2^n.
 • The number of nodes in tree of height n is at most $2^{(n+1)} - 1$.
 • A tree with n nodes has exactly $n-1$ edges
 • The size() method works correctly
 • The height() method works correctly
 • The isFull() method works correctly
Prove: Number of nodes at depth \(d \geq 0 \) is at most \(2^d \).

Idea: Induction on depth \(d \) of nodes of tree

Base case: \(d = 0 \): 1 node. \(1 = 2^0 \checkmark \)

Induction Hyp.: For some \(d \geq 0 \), there are at most \(2^d \) nodes at depth \(d \).

Induction Step: Consider depth \(d+1 \). It has at most 2 nodes for every node at depth \(d \).

Therefore it has at most \(2 \times 2^d = 2^{d+1} \) nodes \(\checkmark \)
Prove that any tree on \(n \geq 1 \) nodes has \(n-1 \) edges

Idea: Induction on number of nodes

Base case: \(n = 1 \). There are no edges ✓

Induction Hyp: Assume that, for some \(n \geq 1 \), every tree on \(n \) nodes has exactly \(n-1 \) edges.

Induction Step: Let \(T \) have \(n+1 \) nodes. Show it has exactly \(n \) edges.

- Remove a leaf \(v \) (and its single edge) from \(T \)
- Now \(T \) has \(n \) nodes, so it has \(n-1 \) edges
- Now add \(v \) (and its single edge) back, giving \(n+1 \) nodes and \(n \) edges.
Alternate Proof: Strong Induction

Induction Hyp.: For some \(n \geq 1 \), every tree \(T \) with \(k \leq n \) nodes has exactly \(k-1 \) edges.

Induction Step: Let \(T \) have \(n+1 \) nodes

- Let \(n(T) = \) # of nodes of \(T \) and \(e(T) = \) # of edges of \(T \)
- Remove the root node \(r \) of \(T \) along with its 2 edges
- This leaves the two subtrees \(T_L \) and \(T_R \) of \(T \)
- \(T_L \) and \(T_R \) each have at most \(n \) nodes
- So \(n(T_L) = 1 + e(T_L) \) and So \(n(T_R) = 1 + e(T_R) \)
- Now add \(r \) (and its 2 edges) back
 - Then \(n(T) = 1 + n(T_L) + n(T_R) \) and \(e(T) = 2 + e(T_L) + e(T_R) \)
 - But \(n(T_L) + n(T_R) = 1 + e(T_L) + 1 + e(T_R) = e(T) \) ✓

Special case: One of \(T_L \) or \(T_R \) is empty. What changes?
Prove that BinaryTree method size() is correct.

- Let n be the number of nodes in the tree T
- Alert: Strong Induction Ahead...

Base case: n = 0. T is empty---size() returns 0

Induction Hyp: Assume size() is correct for all trees having at most n nodes.

Induction Step: Assume T has n+1 nodes
- Then left/right subtrees each have at most n nodes
- So size() returns correct value for each subtree
- And the size of T is 1 + size of left subtree + size of right subtree
Representing Knowledge

- Trees can be used to represent knowledge
 - Example: InfiniteQuestions game
- We often call these trees decision trees
 - Leaf: object
 - Internal node: question to distinguish objects
- Move down decision tree until we reach a leaf node
- Check to see if the leaf is correct
 - If not, add another question, make new and old objects children
- Let’s look at the code…
Building Decision Trees

- Gather/obtain data
- Analyze data
 - Make greedy choices: Find good questions that divide data into halves (or as close as possible)
- Construct tree with shortest height
- In general this is a *hard* problem!
- Example
Representing Arbitrary Trees

• What if nodes can have many children?
 • Example: Game trees

• Replace left/right node references with a list of children (Vector, SLL, etc)
 • Allows getting “ith” child

• Should provide method for getting degree of a node

• Degree 0 ↔ Empty list ↔ No children ↔ Leaf